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Problem Sets

Problem Set 1

Throughout, R is a fixed noetherian ring of characteristic p > 0.

1. Prove the Frobenius is injective if and only if R is reduced.

2. Prove when the Frobenius map is flat, for ideals a and b, one has

(a : b)[q] =
(
a[q] : b[q]

)
.

3. Prove for a multiplicatively closed set W , W−1F e∗R
∼= F e∗ (W−1R).

4. Prove the Frobenius map induces the identity map on SpecR.

5. For any ideal a, prove the powers {an}n and the Frobenius powers {a[pe]}e are cofinal.

6. Prove that F∗− is an exact functor on R-mod.

7. If R→ S → T are maps of rings for which T is a flat R-module, and T is a faithfully flat S-module,
prove S is a flat R-module.

8. Prove a finitely generated flat module over a local ring is free. (Hint: Note that flat modules are
projective, and use Nakayama’s Lemma.)

9. Prove any F -finite local ring (R,m, k) with perfect residue field has F∗R minimally generated by

dimk

(
R�m[p]

)
generators. What changes if k is not perfect?

Problem Set 2

Throughout, R is a fixed noetherian ring of characteristic p > 0.

1. Prove an F -split ring is reduced.

2. Prove any localization of an F -split ring remains F -split.

3. Decide in which characteristics f = x3 + y3 + z3 ⊆ Fp[x, y, z]m defines an F -split hypersurface
where m = (x, y, z).

4. Show the ideal I2 of 2-minors of a 2× 3-matrix is F -split.
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5. Fix a ring R and ϕ ∈ HomR(F e∗R,R). Show when a and b are ϕ-compatible, a+ b, a∩ b,
√
a, and

(c : a) for any ideal c remain ϕ-compatible.

6. Prove when R is F -split and p is a minimal prime, R�p is also F -split.

7. For p prime in a regular ring R, prove p[pe] is p-primary.

8. When R is regular and I is a radical ideal, prove Ass
(
R�I

)
= Ass

(
R�I [q]

)
for any q = pe.

Problem Set 3

Throughout, R is a fixed noetherian ring of characteristic p > 0.

1. Prove the functor Γm is left exact.

2. Fix an extension of rings R → S, not necessarily flat. Given a complex M•, determine a natural
map hn(M•)⊗R S → hn(M• ⊗R S) and prove it is S-linear.

3. Prove any permutation of a regular sequence on a finitely generated R-module remains a regular
sequence when R is local.

4. Fix a local ring (R,m). A regular sequence of length 1 is called a regular element, i.e., a non-zero

divisor non-unit x. Prove that being Cohen-Macaulay ‘deforms,’ i.e., if R�x is Cohen-Macaulay, then
R is Cohen-Macaulay.

5. For a ring R and a = (f1, ..., fs), verify a class

[
g

f1
a · · · fsa

]
= 0 in Hs

a(R) if and only if there is a

non-negative integer k so that g(f1 · · · fs)k ∈
(
f1
a+k, ..., fs

a+k
)

.

6. Prove that in a local ring (R,m), one has isomorphisms as F∗R-modules Hi
m(R) ⊗R F∗R ∼=

Hi
m(F∗R) ∼= F∗H

i
m(R). (Hint: Consider the Čech complex.) More generally, prove when (R,m) →

(S, n) is a finite local extension, that is, mS = n, and S is a finitely generated R-module, Hi
n(R)⊗RS ∼=

Hi
m(S).

7. Verify for a ring R, any R{F}-module W , and y ∈ W , the submodule spanR{ρ(y), ρ2(y), ...} is
F -stable.

8. Prove if W and W ′ are R{F}-modules, if W is an R{F}-submodule of W ′ and W ′ is anti-nilpotent,
then W is also. Furthermore, if W → W ′ is surjective and W is anti-nilpotent, then W ′ is too. Use
this to show in a short exact sequence of R{F}-modules, if any two are anti-nilpotent, then the third
one is too.
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9. Suppose (R,mR) is a regular local ring with any characteristic, and R ⊆ S is a local extension;
i.e., (S,mS) is local and mRS = mS . Prove when S is a finitely generated R-module, then S is
Cohen-Macaulay if and only if it is free as an R-module. (Hint: First note that depthS is the same
if we think of it as an R-module or as an S-module. Recall the Auslander-Buchsbaum theorem.)

10. Call an R{F}-module (M,ρ) nilpotent provided for each m ∈M , there is e so that ρe(m) = 0.
Prove in a short exact sequence 0→M → N → P → 0 of R{F}-modules, N is nilpotent if and only
if M and P are.

Problem Set 4

Throughout, R is a fixed noetherian ring of characteristic p > 0.

1. Prove any F -injective ring is reduced.

2. For a surjective element x, for each ` > 0 and j ≥ `, the maps Hi
m

(
R�x`R

)
→ Hi

m

(
R�xjR

)
are

injective.

3. Prove that a regular element x is a surjective element if and only if the multiplication map
Hi

m(R)
·x−→ Hi

m(R) is surjective for all i.

4. Recall for an R{F}-module (M,ρ), set 0ρM = {m ∈ M | there exists e such that ρe(m) = 0}.
Prove for a short exact sequence 0→ A→ B → C → 0, 0ρB = B if and only if 0ρA = A and 0ρC = C.

5. Suppose L → M → N is an exact sequence of R{F}-modules. If L is anti-nilpotent and ρN is
injective, prove that ρM is injective.

6. Prove a gluing theorem for anti-nilpotent.

Problem Set 5

Throughout, R is a fixed noetherian ring of characteristic p > 0.

1. For (R,m, k) an Artin local ring and E = ER(k), for any finitely generated R-module M , prove
the natural map M → HomR(HomR(M,E), E) is an isomorphism.

2. For (R,m, k) a complete local ring, prove, for an R-module M , the map R→M splits if and only
if E ∼= E ⊗R R→ E ⊗RM is injective.

3. Prove when S → R is a map of rings for which R is a finite S-module and ω•S is a dualizing
complex for S, that R HomS(R,ω•S) is a dualizing complex for R.
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4. Prove when S → R is a split map of rings, if R has FFRT, then so does S.

5. If R is a ring with 0→ S → R→ R�a→ 0 a short exact sequence, provided both S and R�a have
FFRT, must R also have FFRT?
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Semester 1

Some course notes are available at
1. Utah, K. Schwede (2010, 2017),
2. Michgan, K. Smith (2018), and
3. papers in the literature.

1.1 Overview

Fix a space X and a point x0 ∈ X. We have an associated local ring OX,x0
= (R,m, k) where k = R�m. We

always assume k ⊆ R. Rings are commutative and unital unless otherwise mentioned.

Definition 1.1.1 (sheaf). A sheaf F is a contravariant functor F : Open(X)op → C satisfying the gluing
condition; i.e., given a open cover U =

⋃
Ui,

F(U)→
∏
i

F(Ui) ⇒
∏
i,j

F(Ui ∩ Uj)

is an equalizer.

Definition 1.1.2 (spectrum). Given a ring R, the (prime) spectrum of R, denoted X = SpecR, is the
set {p | p ⊆ R is a prime ideal} endowed with the Zariski topology and structure sheaf OX , making (X,OX)
a locally ringed space. The Zariski topology has closed sets V (a) = {p ∈ SpecR | a ⊆ p}. The Zariski
topology has a basis of standard open sets, denoted B = {Df}, where Df = {p ∈ SpecR | f ∈ R, f 6∈ p}.
The structure sheaf OX is the unique sheaf of rings for which OX(X) = R and OX(Df ) = Rf for all standard
opens Df . The stalk of the structure sheaf at a point x0 ∈ X is the local ring OX,x0

= lim−→
x∈U
OX(U).

Definition 1.1.3 (scheme). A locally ringed space which is isomorphic to SpecR for some R is called an
affine scheme. A scheme is a locally ringed space which admits a covering by open sets Ui such that each
Ui is an affine scheme.

Definition 1.1.4 (Krull dimension). We define the Krull dimension of a ring R to be

dimR = sup
n
{p0 ( p1 ( · · · ( pn | pi ⊆ R is a prime ideal} .

Definition 1.1.5 (regular ring). A local ring (R,m, k) is regular if R is noetherian, m = (f1, ..., fn) where

n is minimal, and dimR = n. A ring R is regular if
(
Rp, p, Rp�p

)
is regular for every prime ideal p ⊆ R.

Definition 1.1.6 (nonsingular point). A point x0 ∈ X is a nonsingular point (or a manifold point) if
and only if OX,x0

is regular.

Example 1.1.7. Let X = Spec C[x, y]�(y2 − x), m = (x, y).

m

OX,x0
= C[x, y]m�(y2 − x) is a regular ring, so x0 is a regular point.

Example 1.1.8. Let X = Spec C[x, y]�(y2 − x3), m = (x, y).
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m

OX,x0
= C[x, y]m�(y2 − x3) is not a regular ring, so x0 is not a regular point.

Remark 1.1.9. The study of singularities over C has many tools:
1. small open balls (i.e., local methods),
2. GAGA theorems, allowing us to use analytic approaches (i.e., integration),
3. resolution of singularities and the Minimal Model Program,
4. etc.

None of this is available if we replace C by Fp. We do, however, gain a new tool:

Definition 1.1.10 (Frobenius). Let (R,m) be a local ring, with p = 0. The p-power map F : R → R,
f 7→ fp, is a ring homomorphism; i.e., (f + g)p = fp + gp. F is called the Frobenius.

Definition 1.1.11 (F∗R). Set, for a characteristic p > 0 ring R, a new module

F∗R = {F∗r | r ∈ R}

and identify F∗R ∼= R as a group. That is, F∗r + F∗s = F∗(r + s). Let the R-module structure be given by

sF∗r = F∗(s
pr).

Remark 1.1.12. F∗M makes sense for any R-module M . The natural map R → F∗R sending 1 7→ F∗1 is
identified with the Frobenius; i.e., R→ F∗R sends r 7→ rF∗1 = F∗(r

p).

Remark 1.1.13. For R = Fp(x1, ...), F∗R is not a finitely generated R-module. (Though R is; it is a field,
hence a 1-dimensional vector space over itself.)

We’re most interested in the situation where F∗R is a finitely generated R-module.

Definition 1.1.14 (F -finite). We call such rings (that is, rings where F∗R is a finitely generated R-module)
F -finite.

Remark 1.1.15. Being F -finite is a robust notion; F -finite rings are closed under localization, taking
polynomial algebras, completion, etc.

Definition 1.1.16 (perfect field). A field k of characteristic p is perfect if every element of k is a p-th
power; i.e., k = kp.

Remark 1.1.17. Perfect fields k = kp are always F -finite.

Remark 1.1.18. A general perspective to have in mind is R ∼= k[x1, ..., xn]�a (of finite type), or a localization
of a finite type ring (essentially of finite type), where k is perfect of characteristic p > 0. All such rings are
F -finite.

We can also construct new ideals using the Frobenius.

Definition 1.1.19 (Frobenius power). Let R be a ring and a ⊆ R, a = (f1, ..., fm), be an ideal. We have

aF∗R = F∗a
[p],

where a[p] = (f1
p, ..., fm

p). We call a[p] the Frobenius power of a.

Remark 1.1.20. Note a[p] ⊆ ap, but is often much smaller.
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Example 1.1.21. LetR = k[x] with k = kp. Then F∗R is free of rank p, with basis {F∗1, F∗x, F∗x2, ..., F∗x
p−1}.

Remark 1.1.22. A key feature of the Frobenius F : R → R is that we can iterate; F e : R → R sends

f 7→ fp
e

. We also have F e∗R = {F e∗ r | r ∈ R} and sF e∗ r = F e∗
(
sp

e

r
)
. Furthermore, a[pe] =

(
f1
pe , ..., fm

pe
)

for a = (f1, ..., fm) ⊆ R.

Example 1.1.23. Let R = k[x1, ..., xd]. Then F e∗R is free with basis {F e∗x
t1
1 , ..., F

e
∗x

td
d } with ti < pe. So,

rank(F e∗R) = ped.

Theorem 1.1.24 (Kunz). For a local ring R of dimension d, the following are equivalent:
1. R is regular,
2. F is flat, and
3. F∗R is free of rank pd.

1.2 Review: Dimension Theory

Fix any ring R.

Definition 1.2.1 (catenary). Call a ring R catenary if for any two prime ideals p and q in SpecR, all
maximal chains p = p0 ( · · · ( pn = q have the same length.

Definition 1.2.2 (height). For p ∈ SpecR, define the height of p, ht p, to be sup
n
{p0 ( · · · ( pn = p}. For

a ⊆ R any ideal, set ht a = min
p)a

ht p.

Definition 1.2.3 (Krull dimension 2). The Krull dimension of a ring R is

dimR = sup
m maximal

htm.

Remark 1.2.4. For rings essentially of finite type, one has dimR = dim
(
R�p

)
+ ht p for all p ∈ SpecR.

Definition 1.2.5 (radical). For an ideal a ⊆ R, the radical of a is the ideal

√
a = {r ∈ R | rn ∈ a for some n ∈ N}.

Definition 1.2.6 (system of parameters). For a local ring (R,m), we call a sequence x1, ..., xd a system of
parameters if

√
(x1, ..., xd) = m and d is minimal.

Definition 1.2.7 (regular ring 2). A local ring (R,m) is regular provided m is generated by dimR elements.

Remark 1.2.8. A natural question arises: how can we actually find the minimal number of generators of
m in order to check regularity?

Lemma 1.2.9 (Nakayama’s Lemma). Let (R,m) be local, and let M be a finitely generated R-module. If
M�mM = 0, then M = 0.

Remark 1.2.10. This forces of a lift of a generating set for M�mM to be a generating set for M . Indeed,

suppose β generates M�mM . Set N = 〈β〉 where β is a lift of β. Then(
M�N

)
�
m
(
M�N

)
= 0,

so by Lemma 1.2.9 [Nakayama’s Lemma], M�N = 0; i.e., M = N . Apply this to M = R�m. We
see that the minimal number of generators of m is equal to dimk

(
m�m2

)
. In other words, the embedding

dimension is the dimension of the Zariski cotangent space!
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1.3 Kunz’s Theorem

Recall Theorem 1.1.24 [Kunz]. A key tool to prove this is completion of rings.

Definition 1.3.1 (completion). For any local ring (R,m), the (m-adic) completion is

R̂ = lim←−
n

R�mn,

a new ring whose elements are (ri)i∈N with ri ∈ R�mi and rj ≡ ri mod mj if j ≤ i.

Definition 1.3.2 (complete). There is a natural map R
ϕ−→ R̂ where r 7→ (..., r, r, r). We call R complete

if ϕ is an isomorphism.

Definition 1.3.3 (complete module). One can do a similar construction for an R-module N . Let

N̂ = lim←−
n

N�mnN

be the m-adic completion, and call N complete if N → N̂ is an isomorphism.

Example 1.3.4. Let R = k[x](x) with m = (x). An element of R̂ is a family of polynomials

(f1 + m, f2 + m2, f3 + m3, ...) = (c0, c0 + c1x, c0 + c1x+ c2x
2, ...).

One may identify R̂ ∼= kJxK.

Example 1.3.5. Let R = Z(p) with p prime; that is, R is the localization at (p), Z
[

1
p

]
. Then observe that

R̂ = lim←−
n

Z(p)�pnZ(p)
∼= lim←−

n

Z�pnZ = Zp

which are the p-adic numbers.

Remark 1.3.6. Many properties between R and R̂ are shared. In fact, the natural map R→ R̂ is faithfully
flat.

Theorem 1.3.7 (Cohen Structure Theorem). If (R,m, k) is a noetherian local ring of finite dimension and

k ⊆ R, then R̂ ∼= kJx1, ..., xdK�a. That is, the following are equivalent:
1. R is regular,
2. R̂ is regular, and
3. R̂ ∼= kJx1, ..., xdK.

Definition 1.3.8 (completion of a module). We can also take the completion of an R-module M . That
is, if M is an R-module with (R,m, k) a local ring, then

M̂ = lim←−
n

M�mnM.

Remark 1.3.9. To prove Theorem 1.1.24 [Kunz], it is enough to show 1 holds if and only if 2 does; that
is, we can show R is regular if and only if F is flat. The freeness of F∗R implies and is implied by the other
two. Indeed, see Problem Set 1 #8.

Lemma 1.3.10. For a local ring R, F̂∗R ∼= F∗R̂.

Proof. Note that the powers mn and the Frobenius powers m[pe] are cofinal. (See Problem Set 1 #5.)

This gives an isomorphism R̂ ∼= lim←−
n

R�
(mn)

[p]. Thus

F̂∗R = lim←−
n

F∗R�mnF∗R
∼= lim←−

n

F∗

(
R�

(mn)
[p]

)
.
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As F∗− is exact (Problem Set 1 #6), we have

lim←−
n

F∗

(
R�

(mn)
[p]

)
∼= F∗ lim←−

n

R�
(mn)

[p] ∼= F∗R̂,

as desired.

Remark 1.3.11. Observe that by Remark 1.3.6 and Lemma 1.3.10, the natural map F∗R→ F̂∗R ∼= F∗R̂
is faithfully flat. This will help show that 1 implies 2 in Theorem 1.1.24 [Kunz], the easy direction.
Consider the diagram

R̂ F∗R̂

R F∗

where the vertical maps are faithfully flat. As R is regular, by Theorem 1.3.7 [Cohen Structure Theo-

rem], R̂ ∼= kJx1, ..., xdK, which is a domain. Hence, we can identify F∗R̂ with
(
R̂
) 1

p

, the module of pth roots

of R̂ in any fixed algebraic closure of its fraction field. The Frobenius is identified with the natural inclusion

R̂→
(
R̂
) 1

p

f 7→
(
f

1
p

)p
.

So the map R̂→ F∗R̂ in the diagram above can be identified with

kJx1, ..., xdK ⊆ k
r
x1

1
p , ..., xd

1
p

z
⊆ k

1
p

r
x1

1
p , ..., xd

1
p

z
,

where the first inclusion is a free extension, hence flat, and the second inclusion is a base change along a

finite field extension, hence also flat. Thus, R̂→
(
R̂
) 1

p ∼= F∗R̂ is flat.

R̂ F∗R̂

R F∗R

flat

faithfully flat faithfully flat

Remark 1.3.12. As abstract rings, R ∼= F∗R, and when R is a domain, F∗R ∼= R
1
p . Under these isomor-

phisms,

1 F∗1

R F∗R

R R
1
p

∼=

Proof of Theorem 1.1.24 [Kunz], Part 1. Let R be regular. By Remark 1.3.11, R → F∗R̂ is flat. By
Problem Set 1 #7, R→ F∗R is flat. Hence, F is flat, and 1 implies 2.

Remark 1.3.13. The converse (2 implies 1) requires more. One can still use the Theorem 1.3.7 [Cohen

Structure Theorem]; a sketch follows. Assume F is flat and R̂ ∼= kJx1, ..., xdK�a. The goal is to show that
a = 0. To do this, it is enough to show that

dimk

(
R̂�m[pe]

)
= ped,

10



where d = dimR. One way to show this is due to Lech. By flatness of F ,

F∗

(
m[pe]

�(
m[pe]

)2

)
∼=
(
m�m2

)
⊗R F∗R,

and m�m2 is a free R�m-module. This forces the generators x1
pe , ..., xd

pe of m[pe] to be “Lech independent;”

i.e., if
∑
fixi

pe = 0, then fi ∈ m[pe]. Then one can use induction to prove

dimk

(
R�(x1

a1 , ..., xd
ad)

)
=
∏

ai

for any (a1, ..., ad) ∈ Nd.

Remark 1.3.14. None of the above can work outside characteristic p > 0. So, another approach uses
derived categories.

1.3.1 Derived Categories

Definition 1.3.15 (derived category). For a ring R, the derived category of R-mod, D(R),
has objects consisting of chain complexes

M• : · · · →M3
d3−→M2

d2−→M1
d1−→M0

d0−→M−1 → · · ·

with didi+1 = 0. We call Mi the degree i part of M• and suppM• = {i | Mi 6= 0} the support.
The arrows in D(R) are yet to come.

Example 1.3.16. Every R-module M gives a complex denoted [M ] which is 0→M → 0.

Remark 1.3.17. We can shift complexes; (M•[n])i = Mi+n.

Example 1.3.18. If R is noetherian and M is finitely generated, then there is a free resolution of
M

· · · → F2 → F1 → F0 →M → 0.

Definition 1.3.19 (acyclic). Call a complex M• ∈ obj(D(R)) acyclic if it is exact. In Example
1.3.18 above, F• →M → 0 is acyclic.

Remark 1.3.20. The derived category offers a way to “replace” [M ] with F•. We want [M ]“ ∼= ”F•.

Definition 1.3.21 (homology). Define hn : D(R)→ R-mod to be

M• 7→ hn(M•) = ker(Mn →Mn−1)�im(Mn+1 →Mn),

the homology of M•.

Remark 1.3.22. Note M• is acyclic if and only if hn(M•) = 0 for all n. Also, note that
hn(F•) ∼= hn([M ]).

Definition 1.3.23 (quasi-isomorphism). A basic morphism of complexes M• → N• is a family of
maps Mi → Ni making

· · · M1 M0 M−1 · · ·

· · · N1 N0 N−1 · · ·

commute. A basic morphism is a quasi-isomorphism if the induced map hn(M•) → hn(N•) is
an isomorphism for all n. We will write M• ∼=q N•.
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☡ Warning! 1.3.24. Not all quasi-isomorphisms are invertible!

Remark 1.3.25. Verdie constructed an augmentation to morphisms of complexes so that one may
formally invert quasi-isomorphisms. (See: localization of categories.) Precisely:

Definition 1.3.26 (derived category 2). The maps in D(R) are (homotopy equivalence classes
of) basic morphisms of chain complexes, with quasi-isomorphisms formally inverted. Explicitly, a
map in D(R), M• → N•, is a diagram (a roof):

T•
M• N•

g f

with g a quasi-isomorphism and f a basic morphism.

Remark 1.3.27. The derived category makes derived functors easier to work with. Recall:

Definition 1.3.28 (left derived functor). For a functor G : R-mod → R-mod which is right
exact, its left derived functors are

LnG(M) = hn(G(F•))

for any free resolution F• →M → 0.

Example 1.3.29. Fix N ∈ obj(R-mod). Let GN (−) = −⊗R N , and LnGN (M) = TorRn (M,N).

Remark 1.3.30. Psychologically, replace [M ] with F• and compute hn(G(F•)). In D(R), there is a
functor LG : D(R)→ D(R) with M• 7→ LG(M•), and when M• = [M ], hn(LG([M ])) = LnG(M).
In fact, LG([M ]) ∼=q G(F•) for any F• →M → 0.

Example 1.3.31. Let G = GN (−) = − ⊗R N . For any R-module M , LG([M ]) = M ⊗L
R N is a

complex, called the derived tensor product, such that hn(M ⊗L
R N) = TorRn (M,N).

Remark 1.3.32. There is a dual notation for complexes; i.e., we could write

M• : · · · →M−1 d−1

−−→M0 d0−→M1 → · · ·

with di+1di = 0. In fact, each M• gives a M• by Mn = M−n. We set

hn(M•) = ker(Mn →Mn+1)�im(Mn−1 →Mn).

For any left exact functor F : R-mod→ R-mod, there is a right derived functor which we denote
RF : D(R)→ D(R), computed via injective resolution; i.e., a quasi-isomorphism [M ] ∼=q E

• with
E• acyclic in degree n > 0 and En injective.

Example 1.3.33. We have R Hom(−, N) : D(R) → D(R). If M is an R-module, then we have
hn(R Hom(M,N)) = ExtnR(M,N).

Remark 1.3.34. Derived functors help by carrying a lot of information (every Tor or Ext module)
in a compact way (a single complex).

Proposition 1.3.35 (Derived Hom-Tensor Adjunction). For complexes M•, N•, and P •,

R Hom(M• ⊗L
R N

•, P •) ∼=q R Hom(M•,R Hom(N•, P •)).

☡ Warning! 1.3.36. D(R) is not an abelian category, so we do not have exact sequences of objects
in D(R)! Verdie, in his thesis, constructed a structure on D(R) that replaces exact sequences. He
identified exact triangles. This is a diagram:

C• → D• → F •
+1−−→ C•

where F •
+1−−→ C• means a map F • → C•[+1]. That is, there is a long exact sequence

· · · → Cn → Dn → Fn → Cn+1 → · · · .

12



Remark 1.3.37. The following are facts about exact triangles:

1. Any morphism C• → D• can be completed to a triangle. (This uses the mapping cone.)

2. If C• → D• → F •
+1−−→ C• is a triangle, so too are

D• → F • → C•[+1]
+1−−→ D•

and

F •[−1]→ C• → D•
+1−−→ F •[−1].

3. Given a short exact sequence 0→M → N → P → 0 of R-modules and F a left exact functor,

there is an exact triangle RF (M)→ RF (N)→ RF (P )
+1−−→ RF (M).

Theorem 1.3.38 (Auslander-Buchsbaum-Serre). A local ring (R,m) is regular if and only if it has finite
Tor-dimension; i.e., for any two R-modules M and N , M ⊗L

R N is acyclic in degree n ≥ dimR; i.e.,
hn(M ⊗L

R N) = TorRn (M,N) = 0 for n > dimR.

Remark 1.3.39. Finite Tor-dimension does not persist under quotients. That is, if S has finite Tor-

dimension and R ∼= S�a, then R can fail to have finite Tor-dimension. But we will see a class of rings for
which finite Tor-dimension does descend along quotients.

Definition 1.3.40 (perfect ring). A ring R is perfect if the Frobenius is an isomorphism.

Example 1.3.41. Fp is perfect by Fermat’s Little Theorem; ap = a for all a ∈ Fp.

Example 1.3.42. Fp

[
x, x

1
p , x

1
p2 , ...

]
is perfect.

Theorem 1.3.43 (Bhatt-Scholze). For R a perfect ring and S and T perfect R-algebras,

S ⊗L
R T
∼=q S ⊗R T.

Corollary 1.3.44. If R→ S is a surjection of perfect rings and R has finite Tor-dimension, so too does S.

Proof. Let M and N be S-modules. We will show that M ⊗L
SN
∼=q M ⊗L

RN in D(R). By Theorem 1.3.43

[Bhatt-Scholze], S ⊗L
R S
∼=q S ⊗R S ∼= S, since R�a⊗R R�a ∼= R�(a + a)

∼= R�a.

We observe that for any S-module P ,

P ∼=q P ⊗L
S S
∼=q P ⊗L

S (S ⊗L
R S) ∼=q (P ⊗L

S S)⊗L
R S
∼=q P ⊗L

R S.

Thus we have

M ⊗L
S N

∼=q (M ⊗L
S S)⊗L

S N
∼=q M ⊗L

S (S ⊗L
R S)⊗L

S N
∼=q (M ⊗ SLS)⊗L

R (S ⊗L
S N) ∼=q M ⊗L

R N.

The corollary thus follows.

Remark 1.3.45. Given this definition, a natural problem arises. We want a way to build perfect rings, in
order to have more examples.

Definition 1.3.46 (perfection). Fix any ring R of characteristic p, and set

Rperf = lim−→
F

R

the colimit perfection of R. Note we have a natural map R→ Rperf . In fact, Rperf is a perfect ring, and
for any perfect ring S with map R→ S, there is a diagram

R Rperf

S

13



Example 1.3.47. If R = Fp[x], then Rperf = Fp

[
x, x

1
p , x

1
p2 , ...

]
= Fp

[
x

1
p∞
]
.

Lemma 1.3.48. If R→ S is faithfully flat and S has finite Tor-dimension, then R has finite Tor-dimension.

Remark 1.3.49. If R is local and characteristic p > 0, and the Frobenius F is flat, then the natural map
R→ Rperf is faithfully flat. (See [Stacks 00HP].)

Proof of Theorem 1.1.24 [Kunz], Part 2. Assume (R,m) has a flat Frobenius F . We show that R has
finite Tor-dimension; by Theorem 1.3.38 [Auslander-Buchsbaum-Serre], the result follows. By Re-
mark 1.3.49, R → Rperf is faithfully flat. By Lemma 1.3.48, it is enough to show that Rperf has finite
Tor-dimension. Apply Theorem 1.3.7 [Cohen Structure Theorem] to write

R̂perf ∼= kJx1, ..., xdKperf�a.

By Corollary 1.3.44, it is enough to check that kJx1, ..., xdKperf has finite Tor-dimension. Now, note
the transition maps computing kJx1, ..., xdKperf are flat (by the forward direction of Theorem 1.1.24
[Kunz], proven in part 1). Hence any flat resolution of kJx1, ..., xdKperf -modules are also flat resolutions
as kJx1, ..., xdK-modules. That is, since kJx1, ..., xdK has finite Tor-dimension, kJx1, ..., xdK must have finite
Tor-dimension, as desired.

1.4 F -split Rings

By Theorem 1.1.24 [Kunz], R is regular if and only if F∗R is free, so we observe singularties by observing
“distance from free-ness.” Let rings be of characteristic p and F -finite (i.e., F∗R is a finitely generated
R-module).

Definition 1.4.1 (F -split). A ring R is F -split provided the Frobenius map R → F∗R splits in R-mod.

That is, there is an R-module map F∗R
ϕ−→ R so that the composition

R F∗R R

1 F∗1 1

ϕ

is the identity.

Example 1.4.2. Let R = F2[x]. Then F∗R ∼= R
1
2 ∼= F2

[
x

1
2

]
, a free R-module with basis

{
1, x

1
2

}
. Hence

F2

[
x

1
2

]
∼= R · 1⊕R · x 1

2 . The projection ρ : R
1
2 ∼= R · 1⊕R · x 1

2 → R · 1 ∼= R splits the Frobenius.

Example 1.4.3. If R is regular, then F∗R is free by Theorem 1.1.24 [Kunz], and F∗R ∼=
⊕pd

i=1R as
R-modules, where d = dimR. Then R → F∗R with 1 7→ F∗1 has a splitting which is projection onto the
F∗1-factor.

Remark 1.4.4. A splitting ϕ ∈ HomR(F∗R,R) sent through the natural map

HomR(F∗R,R)
evF∗1−−−→ R

maps ϕ 7→ ϕ(F∗1) = 1. That is, if R is F -split, then evF∗1 is surjective.

Lemma 1.4.5. R is F -split if and only if evF∗1 is surjective.

Proof. By Remark 1.4.4, we only need to show that if evF∗1 is surjective, then R is F -split. But indeed,
suppose ψ ∈ HomR(F∗R,R) has ψ(F∗1) = 1. This forces ψ to be a splitting.

Remark 1.4.6. For any map of R-modules M
ϕ−→ N , ϕ is surjective if and only if Mm

ϕm−−→ Nm is surjective
for all m ⊆ R maximal ideals. That is, using this fact and Lemma 1.4.5, the following are equivalent:

1. R is F -split,
2. evF∗1 is surjective,
3. (evF∗1)m is surjective for all maximal ideals m, and
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4. Rm is F -split for all maximal ideals m.

Remark 1.4.7. By Theorem 1.1.24 [Kunz], every iterate of the Frobenius splits in a regular ring; i.e.,

for all e ≥ 1 and R regular, F e∗R
∼=
⊕ped

i=1R has a projection ϕ : F e∗R → R so that R → F e∗R
ϕ−→ R splits.

This can actually be made stronger; in generality:

Lemma 1.4.8. R is F -split if and only if R→ F e∗R splits for some (equivalently, for all) e ≥ 1.

Proof. If R→ F∗R splits with ϕ : F∗R→ R, we can “iterate” ϕ by identifying F∗R with R. That is, apply

F∗− to F∗R
ϕ−→ R. We get

F 2
∗R

F∗ϕ−−→ F∗R
ϕ−→ R.

Thus, R is F -split implies R→ F e∗R splits for all e.

It now suffices to show that for a fixed e > 0, if F e∗R
ϕ−→ R is a splitting, then R is F -split. Observe that

the following map factors:

R F∗R F e∗R R

1 F∗1 F e∗ 1 1

ϕ

Then ψ : F∗R→ F e∗R
ϕ−→ R is a splitting for R→ F∗R, and hence R is F -split.

Lemma 1.4.9. Fix R ⊆ S an extension of rings.
1. R→ S splits if and only if there exists a surjective map S → R.
2. If R→ S splits and S is F -split, then R is F -split.

Proof.
1. Certainly if R → S splits, then there is a surjective map S → R, the splitting. Conversely, suppose
ψ : S → R is surjective, and let a ∈ S so that ψ(a) = 1. We construct a new map ϕ : S → R where
f 7→ ψ(af). Thus ϕ(−) = ψ(a−) is an R-module map, and therefore a splitting of R→ S. Observe

R S R

1 1 ϕ(1) = ψ(a) = 1

ϕ

2. If S is F -split; i.e., there is a map F∗S
ϕ−→ S, and if R ⊆ S is split, i.e., there is a map S

ψ−→ R, then
the map

R→ F∗R→ F∗S
ϕ−→ S

ψ−→ R

is a splitting, so R is F -split.

Example 1.4.10. Any direct summand of a regular ring is F -split.

Example 1.4.11. A Veronese is F -split: k[xn, xn−1y, ..., xyn−1, yn] is a direct summand of k[x, y].

Example 1.4.12. Fix a group G, and let G act on S = k[x1, ..., xn] by homogeneous action. The invariants

SG = {f ∈ S | g · f = f for all g ∈ G}

form a subring, and when |G| 6≡ 0 mod p, then SG ⊆ S splits. The splitting is ρ : S → SG defined by

ρ(f) =
1

|G|
∑
g∈G

g · f

and is called the Reynolds operator.
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Example 1.4.13. Let p = 2 and let G = Z�2Z = {e, g}. Let S = k[x1, y1, x2, y2]. The action is defined by

g · x1 = x1 + y1 g · x2 = x2 + y2

g · y1 = y1 g · y2 = y2

In this case, SG = k[x1
2−y1x1, y1, x2

2−y2x2, y2, x1y2−x2y1]. We can check later (using Corollary 1.4.24
[Fedder’s Criterion]) that in this case, SG is not F -split.

Example 1.4.14. Determinantal rings are F -split; i.e.,

R =
k

[
x y z
u v w

]
�I2 = k[x, y, z, u, v, w]�(xv − yu, xw − zu, yw − zv),

where I2 denotes the 2× 2-minors of

[
x y z
u v w

]
.

Remark 1.4.15. A natural question to ask is the following: when is a ring R = k[x1, ..., xd]�a an F -split
ring?

To answer this, set S = k[x1, ..., xd], and we ask when a map F∗S → S descends to a map F∗R→ R. If
this happens, then

F∗S S

F∗R R

ϕ

ψ

commutes. That is, we are asking for any given ϕ ∈ HomS(F∗S, S), when does ϕ(F∗a) ⊆ a? This would
yield a well-defined ψ.

Definition 1.4.16 (ϕ-compatible). Call an ideal a a ϕ-compatible ideal if ϕ(F e∗ a) ⊆ a.

Remark 1.4.17. To get a better understanding, we consider HomS(F∗S, S) as a (F∗S)-module via the map
(F∗a) · ϕ : F∗S → S, F∗f 7→ ϕ(F∗af).

Theorem 1.4.18. If S = k[x1, ..., xd] or a localization or a completion of k[x1, ..., xd], then as an (F e∗S)-
module,

HomS(F e∗S, S) ∼= F e∗S

with generator ΦeS given by

ΦeS(F∗x1
λ1 · · ·xdλd) =

{
1 if λi = pe − 1 for all i;

0 otherwise.

That is, ΦeS is projection onto the (x1
pe−1, ..., xd

pe−1)-factor.

Example 1.4.19. If p = 2 and S = F2[x, y], then F∗S ∼= S
1
2 ∼=

⊕4
i=1 S has basis

{
1, x

1
2 , y

1
2 , (xy)

1
2

}
, so

S
1
2 ∼= S · 1⊕ S · x 1

2 ⊕ S · y 1
2 ⊕ S · (xy)

1
2 ,

and ΦS is projection onto S · (xy)
1
2 ∼= S. We see that ρx : S

1
2 → S, defined by projection onto S · x 1

2 , is

ρx = y
1
2 · ΦS . Similarly one can express all other maps F∗S → S in terms of the generator ΦS .

Proof sketch of Theorem 1.4.18. First, write F e∗S
∼=
⊕ped

i=1 S where d = dimS, by Theorem 1.1.24
[Kunz]. Now

HomS(F e∗S, S) ∼= HomS

 ped⊕
i=1

S, S

 ∼= ped⊕
i=1

HomS(S, S) ∼=
ped⊕
i=1

S ∼= F e∗S.

It suffices to prove that each projection F e∗S → S has the form F e∗u · ΦeS .
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Remark 1.4.20. If ϕ ∈ HomS(F e∗S, S) and g ∈ a[pe] (recall Definition 1.1.19 [Frobenius power]), then
a · F e∗S = F e∗ a

[pe] and F e∗ g = h · F e∗ 1 for h ∈ a. Thus,

ϕ(F e∗ g) = ϕ(h · F e∗ 1) = h · ϕ(F e∗ 1) ∈ a.

This means that any u ∈
(
a[pe] : a

)
=
{
f ∈ S | fa ⊆ a[pe]

}
will force ϕ = F e∗u · ΦeS to satisfy ϕ(F e∗ a) ⊆ a;

i.e., will force a to be ϕ-compatible.
Let x ∈ a. We have ϕ(F e∗x) = ΦeS(F e∗u · x) = ΦeS(y · F e∗ 1) ∈ a, with y ∈ a. This gives a natural

homomorphism as F e∗S-modules:

F e∗

(
a[pe] : a

)
·HomS(F e∗S, S)→ HomR(F e∗R,R).

Lemma 1.4.21. Fix R = S�a. Let b ⊆ S be any ideal. If ϕ ∈ F e∗
(
a[pe] : b

)
·HomS(F e∗S, S), then ϕ satisfies

ϕ(F e∗ b) ⊆ a. Moreover, if ϕ(F e∗ b) ⊆ a for all ϕ ∈ HomS(F e∗S, S), then b ⊆ a[pe]. In particular,

F e∗

(
a[pe] : b

)
·HomS(F e∗S, S) = {ϕ ∈ HomS(F e∗S, S) | ϕ(F e∗ b) ⊆ a}.

Proof. Let ϕ ∈ F e∗
(
a[pe] : b

)
·HomS(F e∗S, S). By a direct generalization of Remark 1.4.20 above, we have

ϕ(F e∗ b) ⊆ a.
Next, assume that ϕ(F e∗ b) ⊆ a for all ϕ ∈ HomS(F e∗S, S). Recall that by Theorem 1.1.24 [Kunz],

F e∗S
∼=
⊕ped

i=1 S, so for any projection ρ, ρ(F e∗ b) ⊆ a by hypothesis. Thus

F e∗ b ⊆ aF e∗S = F e∗ a
[pe] ∼=

ped⊕
i=1

a,

which forces b ⊆ a[pe]. Indeed, let x ∈ b. Apply all projections ρ(F e∗x) ∈ a. If we write F e∗x =

(xλ1,...,λd
)λ1,...,λd

∈
⊕ped

i=1 S, then in any slot, xλ1,...,λd
∈ a. Hence, F∗b ⊆

⊕ped

i=1 a
∼= a · F e∗S ∼= F e∗ a

[pe].
Therefore, b ⊆ a[pe], as claimed.

Theorem 1.4.22 (Fedder’s Lemma). Fix R = S�a with S a polynomial ring. The map

F e∗

(
a[pe] : a

)
·HomS(F e∗S, S)→ HomR(F e∗R,R)

is surjective with kernel F e∗
(
a[pe]

)
·HomS(F e∗S, S). That is, as F e∗S-modules,

HomR(F e∗R,R) ∼= F e∗

((
a[pe] : a

)
�a[pe]

)
.

Proof. Surjectivity: BLANK.
To confirm the kernel, apply Lemma 1.4.21 with b = S; the result follows.

Example 1.4.23. The condition that S is regular is necessary. If we let S = k[x, y, z], T = S�(x2 − yz),

and R = T�(x, y)
∼= k[z], then the map ϕ : F∗R→ R sending F∗z

p−1 7→ 1 does not lift to T . First, lift ϕ to

S. We need an element u ∈ ((xp, yp) : (xy)) = (xy)p−1 + (xp, yp), and hence we get F∗u ·ΦS . But to lift this
map to T , we would need v ∈

(
(x2 − yz)p : (x, y)

)
.

Corollary 1.4.24 (Fedder’s Criterion). Let (S,m) = k[x1, ..., xd]m. The following are equivalent:

1. R = S�a is F -split,
2.
(
a[pe] : a

)
6⊆ m[pe] for some e, and

3.
(
a[pe] : a

)
6⊆ m[pe] for all e.
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Proof. The equivalence between 2 and 3 is Lemma 1.4.8.

If R = S�a is F -split, then ϕ ∈ HomR(F e∗R,R) with ϕ(F e∗R) 6⊆ m. Let f ∈ R such that ϕ(F e∗ f) 6∈ m.
By Theorem 1.4.22 [Fedder’s Lemma], ϕ = F e∗u · ΦeS for u ∈

(
a[pe] : a

)
. If

(
a[pe] : a

)
⊆ m[pe], then

ϕ(F e∗ f) = ΦeS(F e∗uf) ∈ m, a contradiction. Hence 1 implies 2.
Conversely, if g ∈

(
a[pe] : a

)
\m[pe], then F e∗ g ·ΦeS descends to a map ϕ ∈ HomR(F e∗R,R) and ϕ(F e∗R) 6⊆

m.

Corollary 1.4.25. If a is principle; i.e., a = (f), then S�(f) is F -split if and only if fp−1 6∈ m[p].

Example 1.4.26. Let S = k[x, y] and R = S�(xy). Then R is F -split, as (xy)p−1 6∈ (xp, yp).

Remark 1.4.27. We finally have an answer to the question posed in Remark 1.4.15: for which maps
ϕ ∈ HomS(F∗S, S) is a ϕ-compatible? We can ask another question: fix ϕ ∈ HomS(F∗S, S). Which a are
ϕ-compatible?

Theorem 1.4.28 (Schwede). If S is any F -split ring and ϕ ∈ HomS(F∗S, S), then there are only finitely
many a that are ϕ-compatible.

1.4.1 Symbolic Powers

Definition 1.4.29 (primary). If R is any noetherian ring, then an ideal q ⊆ R is called primary
provided x · y ∈ q implies x ∈ q or y ∈ √q.

Lemma 1.4.30. If q is primary, then
√
q is prime.

Proof. Let ab ∈ √q. Thus (ab)n = anbn ∈ q for some n. Thus an ∈ q or bn ∈ √q. Thus a ∈ √q or

b ∈
√√

q =
√
q. Thus

√
q is prime.

Definition 1.4.31 (p-primary). If q is primary and p =
√
q, then q is called a p-primary ideal.

Example 1.4.32. In Z, (pn) is a (p)-primary ideal.

Example 1.4.33. If (S,m) is a local ring, then mn are m-primary.

☡ Warning! 1.4.34. Not all prime powers are primary. If R = k[x, y, z]�(xz − y2) and p = (x, y),

then q = p2 = (x2, xy, y2) is not primary. Observe that xz = y2 ∈ q, but x 6∈ q and zn 6∈ √q for
any n.

Remark 1.4.35. Recall that in Z, a prime factorization n = p1
e1 · · · pjej forces an equality of

ideals

(n) = (p1
e1) ∩ · · · ∩ (pj

ej ).

Each (pi
ei) is (pi)-primary.

Definition 1.4.36 (primary decomposition). For a noetherian ring R, a primary decomposition
of an ideal a is a = q1 ∩ · · · ∩ qt with each qi primary.

Definition 1.4.37 (irredundant). We call a primary decomposition of an ideal a = q1 ∩ · · · ∩ qt
irredundant if no qi can be removed.

Definition 1.4.38 (associated primes). Given a primary decomposition a = q1 ∩ · · · ∩ qt, we call

pi =
√
qi the associated primes of a. We write Ass

(
R�a

)
= {pi | pi =

√
qi is an associated prime}.

(Equivalently when R is commutative, p is an associated prime of an R-module M if R�p is iso-

morphic to a submodule of M ; we write p ∈ Ass(M).)
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Definition 1.4.39 (minimal primes). Given a primary decomposition a = q1 ∩ · · · ∩ qt with
associated primes pi =

√
qi, we call the minimal pis with respect to inclusion the minimal primes.

Definition 1.4.40 (embedded primes). Given a primary decomposition a = q1 ∩ · · · ∩ qt with
associated primes pi =

√
qi, if pi is not a minimal prime, then we call it an embedded prime.

Example 1.4.41. If R = k[x, y](x,y), then (x2, xy) = (x) ∩ (x2, xy, y2) = (x) ∩ (x2, xy, y3) = · · · .
The minimal prime is (x), while the embedded prime is (x, y).

Theorem 1.4.42 (Noether). In a noetherian ring, every ideal a has an irredundant primary
decomposition a = q1 ∩ · · · ∩ qt, and the set of minimal primes is unique.

Definition 1.4.43 (symbolic power). Let a be an ideal without embedded primes. Set

a(n) =
⋂

p∈Ass(R�a)

(anRp ∩R) ,

and call a(n) the nth symbolic power of a.

Remark 1.4.44. We have an ⊆ a(n), but equality easily fails.

Example 1.4.45. If p = (x2y− z2, xz− y2, yz−x3) ⊆ k[x, y, z], then p(n) 6= pn for n ≥ 2. In fact,
p(2) 6⊆ p2, but p(3) ⊆ p2.

Remark 1.4.46. We now have a natural question: for any fixed ideal a, when does a(k) ⊆ an

hold?

Remark 1.4.47. Due to a result by Schenzel, symbolic powers are cofinal with ordinary powers.
In fact, for each n, there is an integer c such that a(cn) ⊆ an, and c can be chosen independent
of a! (Though, c still depends on R.) That is, the discrepancy is “linear.” This result is due to
Swanson.

Definition 1.4.48 (big height). For a radical ideal a, define the big height of a to be

bight(a) = max
p∈Ass(R�a)

ht p.

Example 1.4.49. If a = (xy, xz) = (x) ∩ (y, z), then a has associated primes (x) and (y, z). We
have ht a = 1, while bight a = 2.

Theorem 1.4.50 (Ein-Lazarsfeld-Smith, Hochster-Huneke, Ma-Schwede). Let R be a regular ring
and let a be a radical ideal with bight a = h. If n ≥ 1, then a(hn) ⊆ an.

Remark 1.4.51. Harborne asked: for a homogeneous radical ideal a in a polynomial ring with
bight a = h, is it the case that a(hn−h+1) ⊆ an? Unfortunately this fails in general, due to a result
by Harborne-Seceleanu.

Remark 1.4.52. Our goal is to show that a(hn−h+1) ⊆ an holds if the ring S�a is F -split.

Theorem 1.4.53 (Hochster-Huneke). For a radical ideal a in a polynomial ring S with bight a = h and
q = pe ≥ p, we have a(hq) ⊆ a[q].

Proof. As S is regular, by Theorem 1.1.24 [Kunz] the Frobenius on S is flat. This forces Ass
(
S�a
)

and

Ass
(
S�a[q]

)
to be the same. Fix an associated prime p, and note that p is generated by at most h elements

in Sp, by definition of bight a. Set ap = aSp. It suffices to check that ap
hq ⊆ p[q].

Indeed, write ap = (x1, ..., xh). We need to show that (x1, ..., xh)hq ⊆ (x1
q, ..., xh

q); the Pigeonhole
Principle does the job.
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Theorem 1.4.54 (Hochster-Huneke). Let S be a regular ring of characteristic p. Let a be a radical ideal
with bight a = h. For all n ≥ 0 and t > 0, a(hn+tn) ⊆

(
a(t+1)

)n
.

Theorem 1.4.55 (Grifo-Huneke). If S is a regular ring, a is a radical ideal with bight a = h, and S�a is
F -split, then for n ≥ 1, a(hn−h+1) ⊆ an.

Proof. Without loss of generality, we can assume S is local. It suffices to prove the following:

Claim. For q = pe � 0,
(
a[q] : a

)
⊆
(
an : a(hn−h+1)

)[q]
.

Proof. As the Frobenius is flat by Theorem 1.1.24 [Kunz], we have(
an : a(hn−h+1)

)[q]

=

(
(an)

[q]
:
(
a(hn−h+1)

)[q]
)
.

Set f ∈
(
a[q] : a

)
. We wish to show that f ·

(
a(hn−h+1)

)[q] ⊆ (an)
[q]

. Note that

f · a(hn−h+1) ⊆ f · a ⊆ a[q].

So,

f ·
(
a(hn−h+1)

)[q]

⊆ f ·
(
a(hn−h+1)

)q
=
(
f · a(hn−h+1)

)
·
(
a(hn−h+1)

)q−1

⊆ a[q] ·
(
a(hn−h+1)

)q−1

.

Thus, to prove the claim, it suffices to show
(
a(hn−h+1)

)q−1 ⊆
(
a[q]
)n−1

, since
(
a[q]
)n

= (an)
[q]

.
To that end, pick q large so that (hn− h+ 1)(q − 1) ≥ h(n− 1) + (hq − 1)(n− 1). Thus(

a(hn−1+1)
)q−1

⊆
(
a(hn−h+1)

)(q−1)

⊆ a((hn−h+1)(q−1)) ⊆ a(h(n−1)+(hq−1)(n−1)).

Therefore, (
a(hn−h+1)

)q−1

⊆ a(h(n−1)+(hq−1)(n−1)) ⊆
(
a(hq)

)n−1

⊆
(
a[q]
)n−1

,

as desired.

See that the claim yields the theorem, as a(hn−h+1) ⊆ an if and only if
(
an : a(hn−h+1)

)
= S. We then see

that, assuming to the contrary that
(
an : a(hn−h+1)

)
⊆ m, the claim implies that(

a[q] : a
)
⊆
(
an : a(hn−h+1)

)[q]

⊆ m[q],

contradicting that S�a is F -split by Corollary 1.4.24 [Fedder’s Criterion].

1.4.2 Geometric Perspective

Remark 1.4.56. Fix a ringR. Recall (Definition 1.1.2 [spectrum], Definition 1.1.3 [scheme])
that we get an affine scheme X = SpecR which is a locally ringed space. X has a structure sheaf
OX , and we have the global sections functor Γ(X,−) for which Γ(X,OX) = OX(X) ∼= R. The
Frobenius F : X → X coming functorially from F : R → R is an identity on points of X, but it
takes OX to F∗OX .

20



Definition 1.4.57 (direct image functor). Given a continuous map of underlying topological
spaces f : X → Y , we define the direct image functor f∗ from sheaves on X to sheaves on Y to
send a sheaf F on X to f∗F , the (pre)sheaf on Y for which, given V ⊆ Y , f∗F(V ) = F(f−1V ).

Remark 1.4.58. We restate Theorem 1.1.24 [Kunz] in geometric language:

Theorem 1.4.59 (Kunz). If X = SpecR, then the following are equivalent:

1. R is regular,
2. F : X → X is flat, and
3. F∗OX is locally free; i.e., for every point x ∈ X there exists an open neighborhood U of x

such that

F∗OX |U ∼=
⊕
i∈I
OX |U

as OX |U -modules for I some indexing set.

Definition 1.4.60 (globally F -split). Call a scheme X globally F -split if OX → F∗OX is split
as a map of OX -modules.

Remark 1.4.61. It is evident that when X = SpecR, the following are equivalent:

1. X is globally F -split,
2. R is F -split, and
3. Rm is F -split for all m

(by Remark 1.4.6). However, in general, if X is a scheme, then each local ring OX,x0
being

F -split need not imply that X is globally F -split.

Theorem 1.4.62. Let S be a regular ring. Let a ⊆ S be an ideal, and let X = Spec
(
S�a
)

. Define

an ideal

be = im
(
F e∗

(
a[pe] : a

)
·HomS (F e∗S, S)

evF∗1−−−→ S
)
.

The set theoretic locus V (be) ⊆ V (a) ∼= X ⊆ SpecS is the set of points where X is not globally
F -split. That is, the globally F -split locus of X is open.

Remark 1.4.63. The ideal
√
be does not depend on e, but be itself does. That is, the embedded

primes/scheme structure of Spec
(
S�be

)
do depend on e.

Remark 1.4.64. We also restate Theorem 1.4.28 [Schwede] in geometric language:

Theorem 1.4.65 (Schwede). If X = SpecR is globally F -split, then there are only finitely many
compatibly F -split subschemes of X.

Proof sketch by means of decoding the geometric statement into algebra. A subscheme of X that is

of the form Y = Spec
(
R�a

)
is called compatibly F -split if ϕ : F∗R → R is a splitting and a is a

ϕ-compatible ideal. Hence, the theorem is equivalent to Theorem 1.4.28 [Schwede].

1.5 Local Cohomology

Fix a ring R and an ideal a ⊆ R.

Definition 1.5.1 (artinian module). An artinian module M satisfies the descending chain condition on
submodules. That is, there is no infinite descending chain of submodules M = N0 ) N1 ) · · · . In other
words, given an infinite chain N0 ⊇ N1 ⊇ · · · , there exists n ∈ N such that Nn = Nk for all k ≥ n.
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Definition 1.5.2 (a-torsion). The functor Γa : R-mod→ R-mod for which

M 7→ Γa(M) = {m ∈M | atm = 0} =
⋃
t≥0

(
0 :M at

)
is the a-torsion functor, and Γa(M) is the a-torsion submodule of M .

Remark 1.5.3. The functor Γa is left, but not right, exact; i.e., given a short exact sequence 0→ A→ B →
C → 0 of R-modules, the sequence 0→ Γa(A)→ Γa(B)→ Γa(C) is exact. Hence we may elevate Γa to the
derived functors RiΓa(M) = hi(Γa(E•)) for 0→M → E• any injective resolution. In the derived category
D(R), we have the total derived functor RΓa : D(R)→ D(R) for which hi(RΓa([M ])) ∼= RiΓa(M).

Definition 1.5.4 (local cohomology). We define the ith local cohomology of an R-module M to be
Hi

a(M) = Ri(Γa(M)).

Remark 1.5.5. We have the following facts about local cohomology:
1. If 0→ A→ B → C → 0 is a short exact sequence of R-modules, then there is an exact triangle

RΓa(A)→ RΓa(B)→ RΓa(C)
+1−−→ RΓa(A);

i.e., there is a long exact sequence

· · · → Hi
a(A)→ Hi

a(B)→ Hi
a(C)→ Hi+1

a (A)→ · · · .

2. The natural Frobenius F : R→ R induces additive maps F : Hi
a(R)→ Hi

a(R).
3. For i > dimR or i < 0, Hi

a(M) = 0 for all M .
4. RΓa

∼= RΓb as functors if and only if
√
a =
√
b.

5. RΓa is additive; i.e., RΓa

(⊕
i

Mi

)
∼=
⊕
i

RΓa(Mi).

6. One may identify Hi
a(M) ∼= lim−→

t

Exti
(
R�at,M

)
, and for any cofinal system, the limit does not change;

i.e., if R has characteristic p > 0, then Hi
a(M) ∼= lim−→

e

Exti
(
R�a[pe],M

)
.

7. If R ↪→ S is any inclusion of rings and N is an S-module, then RΓa(N) ∼= RΓaS(N). If R ↪→ S is flat,
then for an R-module M , S ⊗R RΓa(M) ∼= RΓaS(S ⊗RM). That is, for each i,

S ⊗R Hi
a(M) ∼= Hi

aS(S ⊗RM).

8. For a directed system {Mj}j∈N of R-modules, Hi
a

(
lim−→
j

Mj

)
∼= lim−→

j

Hi
a(Mj).

9. If (R,m) is local and M is finitely generated, then each Hi
m(M) is artinian.

10. Hi
a(−) is an analog of cohomology of topological spaces with supports. For each R-module M , set

U = SpecR \ V (a), and set M̃ to be the sheaf associated to M on SpecR (that is, for Df ⊆ X a

standard open (recall Definition 1.1.2 [spectrum]), M̃(Df ) = Mf
∼= M ⊗R Rf ). There is an exact

sequence

0→ H0
a(M)→M → H0(U, M̃)→ H1

a(M)→ 0

and isomorphisms Hi
a(M) ∼= Hi+1(U, M̃). More generally, for a topological space X and a closed

subspace Y ⊆ X, the functor ΓY (X,−) takes a sheaf on X to global sections s ∈ Γ(X,F) with stalks
sx0 = 0 for x0 ∈ X \ Y . The functor ΓY (X,−) is left exact, and Hi

Y (X,−) = hi(RΓY (X,−)) is

cohomologically supported in Y . Apply this to X = SpecR, Y = V (a), and F = M̃ ; we recover
Hi

a(M).

Definition 1.5.6 (annihilator). Let M be an R-module, and S ⊆ M a subset. The annihilator of S is
AnnR(S) = {r ∈ R | rs = 0 for all s ∈ S}.
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Remark 1.5.7. A fundamental result of Grothendieck ensures that if (R,m) is a local ring, M is a finitely

generated R-module, and i > dimM = dim
(
R�AnnM

)
, then Hi

m(M) = 0. Furthermore, HdimM
m (M) 6= 0.

In particular, HdimR
m (R) 6= 0.

Remark 1.5.8. There is a notion of Čech complexes for Hi
a(M). Fix a generating set (f1, ..., fs) for a; one

has the complex

Č•(f1, ..., fs;M) : 0→M →
⊕
i

Mfi →
⊕
i<j

Mfifj → · · · →
⊕
i

Mf1···f̂i···fs →Mf1···fs → 0.

One may prove that hi(Č•(f1, ..., fs;M)) ∼= Hi
a(M). It is therefore immediate that Hi

a(M) = 0 for i > s.

Remark 1.5.9. If Hi
a(M) 6= 0, then

√
a = (f1, ..., fs) with s minimal must have i ≤ s. The Čech complex

gives a very explicit representation of

Hs
(f1,...,fs)(R) ∼= Rf1···fs�

im

(⊕
i

Rf1···f̂i···fs → Rf1···fs

)
.

So an element η ∈ Hs
(f1,...,fs)(R) is an equivalence class η =

[
g

f1a···fsa

]
.

Lemma 1.5.10. For a ring R, a = (f1, ..., fs), a class η =
[

g
f1a···fsa

]
∈ Hs

a(R) is zero if and only if there

is a non-negative integer k such that g(f1 · · · fs)k ∈
(
f1
a+k, ..., fs

a+k
)

.

Proof sketch. We only prove that the existence of such a k implies that η = 0. Write g(f1 · · · fs)k =∑
rifi

a+k. Observe that

η =

[
g

f1
a · · · fsa

]
=

[
g(f1

k · · · fsk)

f1
a+k · · · fsa+k

]

=

[ ∑
rifi

a+k

f1
a+k · · · fsa+k

]

=
∑

ri

[
fi
a+k

f1
a+k · · · fsa+k

]

=
∑

ri

[
1

f1
a+k · · · f̂ia+k · · · fsa+k

]
∈ im

(⊕
i

Rf1···f̂i···fs → Rf1···fs

)
,

so η = 0, as claimed.

Remark 1.5.11. Additionally, for
√
a = (f1, ..., fs), one may express Hs

a(R) = lim−→
m

R�(f1
m, ..., fs

m), where

the transition maps are multiplication by f1 · · · fs.

Example 1.5.12. Let R = k[x] and m = (x). We have the Čech complex

Č(x;R) : 0→ R→ Rx = R
[
x−1

]
→ 0.

SoH0
m(R) = 0, andH1

m(R) = Rx�R ∼=
k[x, x−1]�k[x]

∼= x−1k[x−1] is a k-vector space with basis {x−1, x−2, x−3, ...}
and R-action

xa
(

1

xn

)
=

{
1

xn−a if a < n;

0 otherwise.

Note that H1
m(R) is not a finitely generated R-module.
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Remark 1.5.13. More generally, if R = k[x1, ..., xd] and m = (x1, ..., xd), then Hi
m(R) = 0 for i < dimR

and HdimR
m (R) is the k-span of

{
1

x1
a1 ···xd

ad
| ai > 0

}
.

Example 1.5.14. When d = 2, we have

··
·

x2 xy y2

k[x, y] : x y

1

·x
·y ·x

·y

·x ·y

and

1
xy

H2
(x,y)(k[x, y]) : 1

x2y
1
xy2

1
x3y

1
x2y2

1
xy3

··
·

·x ·y

·x
·y ·x

·y

Definition 1.5.15 (depth). For a local ring (R,m) and R-module M , we define the depth of M to be

depthM = min
n
{Hn

m(M) 6= 0} .

Remark 1.5.16. By definition, RΓm([M ]) has support in [depthM,dimM ].

Definition 1.5.17 (Cohen-Macaulay). We call an R-module M Cohen-Macaulay if depthM = dimM .
A ring R is Cohen-Macaulay if it is Cohen-Macaulay as an R-module.

Remark 1.5.18. Recall that a free resolution is a quasi-isomorphic representative F• of [M ] in D(R); i.e.,
F• is a complex with each Fi free and with [M ] ∼=q F•. The complex F• need not be bounded; that is,
infinite free resolutions exist. It can even be the case that every free resolution F• →M → 0 is unbounded.

Definition 1.5.19 (projective dimension). We define the projective dimension

p dim(M) = min
n
{[M ] ∼=q F• | Fi = 0 for i > n, Fi is projective} .

Theorem 1.5.20 (Auslander-Buchsbaum). Let R be noetherian. Let M be a finitely generated R-module.
If M has finite projective dimension, then p dimM + depthM = depthR.

Remark 1.5.21. Any finitely generated module over a polynomial ring has finite projective dimension, by
the Hilbert Syzygy Theorem. Hilbert’s motivation was to study RG, the ring of invariants. That is, he
wished to construct · · ·F1 → F0 → RG → 0 with rankFi <∞.

Definition 1.5.22 (regular sequence). Let R be a noetherian ring. Let M be an R-module. A se-
quence x1, ..., xd ∈ R is called an M-sequence (or M-regular sequence, or regular sequence) provided

(x1, ..., xd)M 6= M , x1 is not a zero divisor on M , and xi is not a zero divisor on M�(x1, ..., xi−1) for all i.
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☡ Warning! 1.5.23. The order of a regular sequence matters!

Example 1.5.24. Consider R = k[x, y, z]. The sequence xy, xz, x − 1 is not a regular sequence on R, but
x− 1, xy, xz is a regular sequence on R.

Remark 1.5.25. For finitely generated modules over local rings, any permutation of a regular sequence is
regular.

Theorem 1.5.26 (Rees). Let (R,m, k) be a local ring. Let M be a finitely generated R-module. If x1, ..., xd
is an M -regular sequence of maximal length, then for each i ∈ {1, ..., d},

Exti(k,M) ∼=

{
Hom

(
k,M�(x1, ..., xd)M

)
if i = d;

0 otherwise.

Remark 1.5.27. The length d of a maximal regular sequence is min
n
{Extn(k,M) 6= 0}; i.e., if R is local

and M is finitely generated, then all maximal M -regular sequences have the same length.

Definition 1.5.28 (depth 2). Let (R,m) be a local ring and M a finitely generated R-module. Define
depthM = min

n
{Extn(k,M) 6= 0}.

Remark 1.5.29. Let us confirm that our two definitions of depth agree. Let 0→M → E• be an injective
resolution. We have Extn(k,M) = hn(Hom(k,E•)). For any R-module N , note that

Hom(k,N) ∼= Hom
(
R�m, N

)
∼= Hom(k,Γm(N)).

Thus Hom(k,E•) ∼= Hom(k,Γm(E•)) ∼= Hom(k,RΓm(M)). So Extn(k,M) ∼= hn(Hom(k,RΓm(M)), and
one may check that

hn(Hom(k,RΓm(M)) ∼=

{
Hom(k,HdepthM

m (M)) if n = depthM ;

0 otherwise.

Remark 1.5.30. The above computation makes it clear that depthR ≤ dimR. We can also redefine
Cohen-Macaulay local rings:

Definition 1.5.31 (Cohen-Macaulay 2). A local ring (R,m) is Cohen-Macaulay provided some system of
parameters is a regular sequence (equivalently, all systems of parameters are regular sequences).

Remark 1.5.32. The key connection for us between local cohomology and singularities in positive char-
acteristic is the following. The (iterated) Frobenius F e : R → R induces a natural morphism of complexes
RΓa(R) → F e∗RΓa[pe](R) ∼=q F

e
∗RΓa(R), as Frobenius powers are cofinal with ordinary powers (Problem

Set 1 #5). This induces a Frobenius action on cohomology which we denote ρe : Hi
a(R) → F e∗H

i
a(R).

Explicitly, ρe(rη) = rp
e

ρ(η).

Remark 1.5.33. We may view this as an additive map ρe : Hi
m(R) → Hi

m(R) which is not R-linear, but
does satisfy ρe(rη) = rp

e

ρ(η). This may be called F -semilinear, or pe-linear.

Definition 1.5.34 (Frobenius action). We say ρ : M →M is a Frobenius action if ρ(rm) = rpρ(m).

Remark 1.5.35. Having such a Frobenius action ρ : M → M makes M into a left R{F}-module, where

R{F} = R[χ]�(χr − rpχ). Note that R{F} is a non-commutative ring. A left R{F}-module is an R-module

M with a Frobenius action ρ : M →M .

Remark 1.5.36. Recall that for any field k, a k[T ]-module V is a k-vector space with a linear transformation
T : V → V . See the analog to (M,ρ).

Remark 1.5.37. Note that we can iterate ρ, getting 1, ρ, ρ2, ρ3, ....
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Example 1.5.38. In the case a = (f1, ..., fs) ⊆ R, the action on Hs
a(R) = lim−→

R�(f1
m, ..., fs

m) is ρ([g +

(f1
m, ..., fs

m)]) = [gp + (f1
pm, ..., fs

pm)].

☡ Warning! 1.5.39. Local cohomology is almost never finitely generated!

Remark 1.5.40. One way to study large modules is to consider associated primes; i.e., prime ideals p for

which R�p ↪→M . For example, one may have that⊕
p∈Ass(M)

R�p ↪→M,

and try to show that |Ass(M)| < ∞. Unfortunately in general, Hi
a(M) can fail to have finitely many

associated primes.

Remark 1.5.41. In the local setting, that is, when (R,m, k) is a local ring, m is an associated prime of
the local cohomology module Hi

a(R) via k ↪→ Hi
a(R). Even when m is the only associated prime, the socle,

which is the largest k-vector space in Hi
a(R), can be infinitely generated.

Definition 1.5.42 (simple module). An R-module M is simple if M 6= 0 and M has no nonzero proper
submodules; i.e., if N (M , then N = 0.

Definition 1.5.43 (essential submodule). Let M be an R-module. An essential submodule of M is a
submodule N such that for every submodule H of M , H ∩N = 0 implies that H = 0. Equivalently, we say
that M is an essential extension of N .

Definition 1.5.44 (socle). The socle of a module M over a ring R is the set

soc(M) =
∑
{N | N is a simple submodule of M}

=
⋂
{E | E is an essential submodule of M}.

Remark 1.5.45. If M is an artinian module, then soc(M) is an essential submodule of M .

Example 1.5.46. The first local cohomology with infinitely many associated primes is due to Katzman in

2002. Let R = k[x, y, s, t, u, v]�(sx2v2 − (t+ s)xyuv + ty2u2). Katzman identified the associated primes of

H2
(u,v)(R) with k[s, t]-irreducible factors of

∑
(−1)i(ti + sti−1 + · · · + si−1t + si). In 2004, Singh-Swanson

gave examples over domains.

Theorem 1.5.47 (Huneke-Sharp). If R is a regular ring of characteristic p, then

Ass
(
Hi

a(R)
)
⊆ Ass

(
Exti

(
R�a, R

))
.

That is, |Hi
a(R)| <∞.

Proof. Without loss of generality, if p ∈ Ass(Hi
a(R)), then we can assume R is local with maximal ideal p.

That is, we can assume that the socle of Hi
a(R) is not zero. Recall from Remark 1.5.5 that

Hi
a(R) = lim−→Exti

(
R�a[pe], R

)
.

Some for some e, the socle of Exti
(
R�a[pe], R

)
is not zero. Since R is regular, by Theorem 1.1.24 [Kunz],

the Frobenius is flat, so

Exti
(
R�a[pe], R

)
∼= Exti

(
R�a, R

)
⊗ F e∗R.

Now note that p in (R, p, k) is an associated prime of M if and only if depthM = 0, since

depthM = min
n
{Hn

p (M) 6= 0}
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and R�p ∼= k ↪→ Hn
p (M) for all n ≥ 0. (See Remark 1.5.41.) By Theorem 1.5.20 [Auslander-

Buchsbaum], p dimM = depthR. Thus, by flatness,

p dim
(

Exti
(
R�a, R

)
⊗R F e∗R

)
= p dim

(
Exti

(
R�a, R

))
.

The result follows.

Example 1.5.48. Consider R = k[x, y, z, w]�(xz − yw) with m = (x, y, z, w). In H2
(x,y)(R), one can check

that m is the only associated prime, but the socle is infinitely generated, as for each a, the element
[
wa−1ya−1

xaya

]
is annihilated by m.

1.6 Anti-nilpotent Rings

We know that in general, local cohomology is not finitely generated, nor has finitely many associated primes.
What sort of finiteness can we expect in the case that R is an F -split ring?

Definition 1.6.1 (F -stable). Let (M,ρ) be an R{F}-module. Call N ⊆ M F -stable if ρ(N) ⊆ N . (That
is, using F∗− notation, we say ρ(N) ⊆ F∗N .)

Example 1.6.2. If R = k[x1, ..., xd]m, then the only F -stable submodule of Hd
m(R) is itself. One can easily

check when d = 1; observe that if η =
[

1
xa

]
∈ H1

(x)(k[x]), then

ρ(η) = ρ

([
1

xa

])
=

1

xpa
.

If N ⊆ H1
(x)(k[x]) and N is F -stable, then

{[
1
xpa

]
| a ∈ N

}
⊆ N , and scaling by x gives the result.

Theorem 1.6.3 (Ma). If (R,m) is F -split, then for each i, there are only finitely many F -stable submodules
of Hi

m(R).

Remark 1.6.4. Theorem 1.6.3 [Ma] generalizes results of Enescu-Hochster, which assumed R is a Goren-
stein ring. (See Definition 1.10.42 [Gorenstein] to come.) We will prove Theorem 1.6.3 [Ma] using a
result by Enescu-Hochster (Theorem 1.6.6) that deals with the following related definition.

Definition 1.6.5 (anti-nilpotent). Let (R,m) be a local ring. Let (W,ρ) be an R{F}-module. Call W anti-

nilpotent provided for each F -stable submodule V of W , ρ acts injectively on W�V . That is, ρ(w) ∈ V if
and only if w ∈ V .

Theorem 1.6.6 (Enescu-Hochster). If W is an anti-nilpotent R{F}-module, then it has only finitely many
F -stable submodules.

Remark 1.6.7. The proof of Theorem 1.6.6 [Enescu-Hochster] utilizes a category of F-modules;
i.e., R{F}-modules M with an isomorphism θ : M → M ⊗R F∗R. Lyubeznik gave a fully faithful
functor from artinian R{F}-modules which is exact on the subcategory of anti-nilpotent modules. The
finiteness comes from an older result of Hochster that uses “noetherian induction.” The idea is that to
prove a theorem about noetherian modules, do so by contradiction. If M is a counterexample, then{
N ⊆M |M�N is a counterexample

}
6= ∅, since it contains 0. By Zorn’s lemma, we pick N maximal

and work with M�N ; that is, we can assume that all proper quotients of M satisfy the theorem.

Remark 1.6.8. Such a technique can be used to prove the following:

Claim. If R is a noetherian ring, then R has finitely many minimal primes.
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Proof. Suppose R is a noetherian ring, and assume via noetherian induction that all quotients of
R have finitely many minimal primes. R cannot be a domain, so pick x 6= 0 and y 6= 0 in R such
that xy = 0. Any minimal prime of R must contain x or y. If x ∈ p, then p�(x) is a minimal

prime of R�(x), and symmetrically, p�(y) is a minimal prime of R�(y). Thus, R has finitely many

minimal primes.

Remark 1.6.9. We also need the following lemmas to prove Theorem 1.6.3 [Ma].

Lemma 1.6.10. Let (W,ρ) be an R{F}-module. W is anti-nilpotent if and only if for each η ∈ W ,
η ∈ spanR{ρ(η), ρ2(η), ρ3(η), ...}.

Proof. LetW be anti-nilpotent. The submodule V = spanR{ρ(η), ρ2(η), ...} is F -stable, and clearly ρ(η) ∈ V .

As W is anti-nilpotent, ρ acts injectively on W�V , so ρ(η) ∈ V (that is, ρ(η) = 0 ∈ W�V ) implies η ∈ V
(that is, η = 0 in W�V ).

Conversely, let V ⊆ W be any F -stable submodule of W . Proving the contrapositive, suppose W

is not anti-nilpotent, i.e., ρ does not act injectively on W�V . Pick η 6∈ V such that ρ(η) ∈ V . So
spanR{ρ(η), ρ2(η), ...} ⊆ V , but η 6∈ spanR{ρ(η), ρ2(η), ...}.

Lemma 1.6.11. Let R be an F -split ring. Let η ∈ Hi
m(R). Let N ⊆ Hi

m(R). If F∗η is in the F∗R-span of
the image of N under Hi

m(R)→ F∗H
i
m(R), then η ∈ N .

Proof. We prove an actually strong result. Consider the following:

Claim. Let (R,m) and (S, n) be local rings. Suppose there exists a split injection R ↪→ S with√
mS = n. Let N ⊆ Hi

m(R). If η is in the S-span of the image of N in Hi
n(S) under the map

induced by the injection, then η ∈ N .

Proof. Denote the splitting by γ : S → R. There is a natural map

ϕ : S ⊗R Hi
m(R)→ Hi

mS(S) ∼= Hi
n(S)

arising from tensoring the Čech complex computing Hi
m(R) by S. This gives a natural diagram

Hi
n(S) S ⊗R Hi

m(R)

Hi
m(R)

ϕ

j1 j2

where j2(η) = 1⊗ η and j1 is induced by R ↪→ S. The splitting γ induces a map

q1 : Hi
n(S)→ Hi

n(R) ∼= Hi
m(R)

coming from S ∼= R⊕ P as R-modules, so indeed we have

q1 : Hi
n(S)→ Hi

n(R⊕ P ) ∼= Hi
n(R)⊕Hi

n(P )
proj−−−→ Hi

n(R) ∼= Hi
m(R).

We also have a map q2 : S ⊗R Hi
m(R)→ Hi

m(R) defined by q2(s⊗ η) = γ(s) · η extended linearly.
Note that both q1j1 = id and that the following diagram commutes:

Hi
n(S) S ⊗R Hi

m(R)

Hi
m(R)

q1

ϕ

q2
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Now assume that η is in the S-span of the image of N in Hi
n(S). That is, j1(η) =

∑
k

skj1(nk) for

nk ∈ N and sk ∈ S. Using the above, we have

η = q1(j1(η))

= q1

(∑
k

skj1(nk)

)

= q1

(∑
k

skϕ(j2(nk))

)
=
∑
k

q1(skϕ(j2(nk)))

=
∑
k

q1(ϕ(skj2(nk)))

=
∑
k

q2(skj2(nk))

=
∑
k

q2(sk(1⊗ nk))

=
∑
k

q2(sk ⊗ nk)

=
∑
k

γ(sk)nk,

which is in N , as desired.

The lemma follows by setting S = F∗R.

Proof of Theorem 1.6.3 [Ma]. Let (R,m) be F -split. We need to show that there are only finitely many
F -stable submodules of Hi

m(R). By Theorem 1.6.6 [Enescu-Hochster], it is enough to show that F -
split implies anti-nilpotent. By Lemma 1.6.10, it is enough to check that for each element η ∈ Hi

m(R),
η ∈ spanR{ρ(η), ρ2(η), ...}, for then Hi

m(R) is anti-nilpotent.
First, for j > 0, set Nj = spanR{ρk(η) | k ≥ j}. Note that Hi

m(R) = N0 ⊇ N1 ⊇ N2 ⊇ · · · . Since Hi
m(R)

is artinian (Remark 1.5.5), we can pick e minimal so that Ne = Ne+1. The result follows if e = 0.
Assume for the sake of contradiction that e > 0, so ρe−1(η) 6∈ Ne. By Lemma 1.6.11, ρe−1(η) is not in

the F∗R-span of the image of Ne = Ne+1 under Hi
m(R)

ρ−→ F∗H
i
m(R). But clearly ρ(ρe−1(η)) = ρe(η) ∈ Ne,

so we have a contradiction.

☡ Warning! 1.6.12. The converse of Theorem 1.6.3 [Ma] is false! Local cohomology Hi
m(R) having

finitely many F -stable submodules need not imply that R is F -split. Consider R = k[x, y, z]�(x3 + y3 + z3).

One can check that the only F -stable submodule of H2
m(R) is the socle, but R is F -split only whenever

p ≡ 1 mod 3, by Corollary 1.4.24 [Fedder’s Criterion]

Theorem 1.6.13 (Schwede-Tucker). Let (R,m) be an F -split local ring. Let the embedding dimension of R

be ν. The number of primes p compatible with the splitting and of dimension d (that is, dimR�p = d) is at

most
(
ν
d

)
.

Remark 1.6.14. The bound
(
ν
d

)
comes from the following theorem:

Theorem. If S is set of primes such that the set of finite intersections, ⋂
pi∈T

pi | T ⊆ S, |T | <∞

 ,

is closed under sums, then the number of primes in S of dimension d is at most
(
ν
d

)
.
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1.7 F -injective Rings

Lemma 1.7.1. If (R,m) is F -split, then for each a ⊆ R, the natural Frobenius action on Hi
a(R) is injective.

Proof. Set ϕ : F∗R→ R the splitting, so

R F∗R R

id

ϕ

Apply Hi
a− to get

Hi
a(R) F∗H

i
a(R) Hi

a(R)

id

Hence, Hi
a(R)→ F∗H

i
a(R) is injective, as desired.

Definition 1.7.2 (F -injective). Call a local ring (R,m) F -injective provided Hi
m(R)→ F∗H

i
m(R) is injec-

tive for all i.

Remark 1.7.3. By Lemma 1.7.1 above, F -split implies F -injective. The converse fails.

Example 1.7.4. Let R = k[x, y, z, w]m�(xy, xz, y(z − w2)). One can check that R is not F -split using

Corollary 1.4.24 [Fedder’s Criterion] in Macaulay2. That is, check that(
(xy, xz, y(z − w2))[p] : (xy, xz, y(z − w2))

)
⊆ m[p].

How do we show that R is F -injective, though?

Remark 1.7.5. One technique to show that a ring is F -injective is through “deformation.”

Definition 1.7.6 (deform). A property P deforms for a local ring (R,m) provided for each regular element

x ∈ m, if R�xR has property P , then R has property P .

Remark 1.7.7. The visual suggestion of deformation is clearer when we consider the geometric perspective.
Let X = SpecR. Map k[t]→ R by t 7→ x a regular element. We get a map of schemes X

π−→ A1
k = Spec k[t].

The map SpecR�xR ↪→ X is the fiber over 0.

SpecR�xR

X

• A1
k

0

π

Remark 1.7.8. Note that P = “being regular” does not deform. Consider R = k[x, y, z]�z(y2 − x3). R is

not regular, but R�zR ∼= k[x, y] is.

Remark 1.7.9. Property P = “being Cohen-Macaulay” does deform. See Problem Set 3 #4.

Remark 1.7.10. A natural question thus arises: does F -injective deform for all local rings (R,m)? In fact,
this is open in general! There are some partial results, however.
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Theorem 1.7.11 (Fedder). If (R,m) is Cohen-Macaulay, then F -injective deforms.

Proof. Let x ∈ m be a regular element. Let R�xR be F -injective. We need to show that R is F -injective;

i.e., we must show that Hd
m(R)

ρ−→ Hd
m(R) is injective. This suffices, as R is Cohen-Macaulay, so all other

local cohomology modules are 0. Recall that we may pick a system of parameters x1, ..., xd with x = x1,√
(x1, ..., xd) = m, and d minimal. An element η ∈ Hd

m(R) is a class

η =

[
f

x1
a1 · · ·xdad

]
,

and we may pick a representative for η with a1 minimal.
We know η = 0 if and only if there exists k such that f(x1 · · ·xd)k ∈ (x1

a1+k, ..., xd
ad+k), by Lemma

1.5.10. As R is Cohen-Macaulay, by Definition 1.5.31 [Cohen-Macaulay 2], x1, ..., xd is a regular
sequence, so η = 0 if and only if f ∈ (x1

a1 , ..., xd
ad); i.e., k = 0. Also,

ρ(η) =

[
fp

x1
pa1 · · ·xdpad

]
Set η for the image of η in Hi

m

(
R�xR

)
. Assume ρ(η) = 0, so[

fp

x1
pa1 · · ·xdpad

]
= 0,

which implies fp ∈ (x1
pa1 , ..., xd

pad) in R. Thus fp ∈ (x2
pa2 , ..., xd

pad) in R�xR. That is,

ρ

([
f

x2
ad · · ·xdad

])
= ρ (η) = 0

in R�xR. As R�xR is F -injective, η = 0 in R�xR. Thus, f ∈ (x2
a2 , ..., xd

ad) in R�xR, and hence we have
f ∈ (x1, x2

a2 , ..., xd
ad) in R. We can write

f = r1x1 +

d∑
i=2

rixi
ai ;

we get [
f

x1
a1 · · ·xdad

]
=

[
r1x1

x1
a1 · · ·xdad

]
+

d∑
i=2

[
rixi

ai

x1
a1 · · ·xdad

]
,

and

d∑
i=2

[
rixi

ai

x1
a1 · · ·xdad

]
= 0

in Hi
m(R) by a Čech complex computation. This contradicts the minimality of a1, unless η = 0, which we

needed to show.

Remark 1.7.12. We can provide an alternative proof for Theorem 1.7.11 as follows:

Proof. Consider the short exact sequence

0→ R
·x−→ R→ R�xR→ 0.

We adjust the Frobenius action to get a map of short exact sequences:
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0 R R R�xR 0

0 F e∗R F e∗R F e∗
R�xR 0

·x

xp−1F e F e F e

·x

This induces in local cohomology, for d = dimR, the following:

0 Hd−1
m

(
R�xR

)
Hd

m(R) Hd
m(R) 0

0 F e∗H
d−1
m

(
R�xR

)
F e∗H

d
m(R) F e∗H

d
m(R) 0

F e

·x

xp−1F e F e

·x

We now assert the following:

Claim. xp−1F e is injective in the local cohomology diagram above.

Proof. We use the fact that if soc(Hd
m(R))∩ ker(xp−1F e) = 0, then ker(xp−1F e) = 0; that is, that

soc(Hd
m(R)) ↪→ Hd

m(R) is an essential extension. This holds by Remark 1.5.45, as Hd
m(R) is

artinian by Remark 1.5.5. But indeed, we can show so explicitly:

Conflate F e∗N with N for all objects N . Set η ∈ soc(Hd
m(R))∩ker(xp−1F e), so x ·η = 0. That is, η

lifts to Hd−1
m

(
R�xR

)
in the local cohomology diagram above. Now, as Hd−1

m

(
R�xR

)
↪→ Hd

m(R),

we see that η = 0. Now, apply the 5 Lemma.

Example 1.7.13. Let R = k[x, y, z, w]m�(xy, xz, y(z − w2)) as in Example 1.7.4. R is Cohen-Macaulay,

and w ∈ m is a regular element. The ring R�wR is

R�wR ∼=
k[x, y, z, w]m�(xy, xz, yz).

One can check that R�wR is F -split using Corollary 1.4.24 [Fedder’s Criterion], hence F -injective by
Lemma 1.7.1. Thus R is F -injective by Theorem 1.7.11.

Remark 1.7.14. Cohen-Macaulay is not the only condition that gives a partial result to the question of
F -injectivity deforming.

Definition 1.7.15 (surjective element). For a local ring (R,m), call x ∈ m a surjective element if x is

regular and for all ` ≥ 0, Hi
m

(
R�x`R

)
→ Hi

m

(
R�xR

)
is surjective.

Theorem 1.7.16 (Horiuchi-Miller-Shimomoto). If (R,m) is a local ring, x ∈ m is a surjective element, and
R�xR is F -injective, then R is F -injective.

Remark 1.7.17. Property P = “being F -split” does not deform, by Theorem 1.7.18. However, there is
a deformation result involving F -split and F -injective; see Theorem 1.7.19.

Theorem 1.7.18 (Singh). Let m,n ∈ Z such that m− m
n > 2 and

R = k[A,B,C,D, T ]�I

where I = I2

[
A2 + Tm B D

C A2 Bn −D

]
. If gcd(p,m) = 1, then R�TR is F -split, but R is not F -split.
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Theorem 1.7.19. If (R,m) is local, x ∈ m is regular, and R�xR is F -split, then R is F -injective.

Proof. It suffices to show x is a surjective element, by Theorem 1.7.16 [Horiuchi-Miller-Shimomoto].

Set ` > 0, and let C = coker
(

Φ : Hi
m

(
R�x`R

)
→ Hi

m

(
R�xR

))
. We have a diagram

Hi
m

(
R�x`R

)
Hi

m

(
R�xR

)
C 0

F e∗H
i
m

(
R�x`R

)
F e∗H

i
m

(
R�xR

)
F e∗C 0

Φ

ρ ρ ρC

F e
∗Φ

where all ρ are Frobenius actions. The image of Hi
m

(
R�x`R

)
in Hi

m

(
R�xR

)
is F -stable, by checking

Definition 1.6.1 [F -stable] using the diagram:

ρ
(

Φ
(
Hi

m

(
R�x`

)))
= F e∗Φ

(
ρ
(
Hi

m

(
R�x`R

)))
.

As R�xR is F -split, all local cohomology of R�xR is anti-nilpotent. Thus, ρC is injective.

For e� 0, the map ρ : Hi
m

(
R�xR

)
→ F e∗H

i
m

(
R�xR

)
factors as

Hi
m

(
R�xR

)
→ F e∗H

i
m

(
R�xp

e

R

)
→ F e∗H

i
m

(
R�x`R

)
→ F e∗H

i
m

(
R�xR

)
Denote by ϕ the piece of the above map ϕ : Hi

m

(
R�xR

)
→ F e∗H

i
m

(
R�xpeR

)
→ F e∗H

i
m

(
R�x`R

)
.

So a diagram chase yields C = 0. Indeed, let z ∈ C. Lift z to z′ in Hi
m

(
R�xR

)
. Map z′ to ρ(z′) = z̃,

and as ρ factors, pick ẑ ∈ F e∗Hi
m

(
R�x`R

)
such that ϕ(z′) = ẑ. See that ẑ 7→ 0 ∈ F e∗C, and since ρC is

injective, C = 0, as desired.

z′ z

Hi
m

(
R�x`R

)
Hi

m

(
R�xR

)
C 0

F e∗H
i
m

(
R�x`R

)
F e∗H

i
m

(
R�xR

)
F e∗C 0

ẑ z̃ 0

ρ ρ
ϕ

ρC

Thus, x is a surjective element, and the proof is complete.

Theorem 1.7.20 (Ma-Quy). Anti-nilpotent deforms.

Proof sketch. The proof first establishes that if R�xR is anti-nilpotent, then x is a surjective element. Once
done, let N ⊆ Hi

m(M) be an F -stable submodule. One checks that

L =
⋂
t∈N

xtN

is also F -stable, then for each e, lets δ : Hi−1
m

(
R�xR

)
→ Hi

m(R) and produces a diagram

0
Hi−1

m

(
R�xR

)
�δ−1(L)

Hi
m(R)�L

Hi
m(R)�L 0

0
Hi−1

m

(
R�xR

)
�δ−1L

Hi
m(R)�L

Hi
m(R)�L 0

F e
xpe−1F e F e
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Next, use a socle argument to show that xp
e−1F e is injective. This forces F e to be injective. Finally, use an

argument similar to the proof of Theorem 1.6.3 [Ma] to the sequence

N ⊇ xN ⊇ x2N ⊇ · · ·

to show that N = L.

Theorem 1.7.21 (Schwede). Let (R,m) be a local ring with ideals a1 and a2 such that a1 ∩ a2 = (0)

and dimR = dim
(
R�a1

)
= dim

(
R�a2

)
. If R�a1

and R�a2
are Cohen-Macaulay and R�a1

, R�a2
, and

R�(a1 + a2) are F -injective, then R is F -injective.

Proof. Set d = dimR, and use

0→ R→ R�a1
⊕R�a2

→ R�(a1 + a2)→ 0.

Apply RΓm to get

0→ Hi−1
m

(
R�(a1 + a2)

)
∼−→ Hi

m(R)→ Hi
m

(
R�a1

)
⊕Hi

m

(
R�a2

)
∼= 0

for i < d. This will show that the natural Frobenius action on Hi
m(R) is injective for i < d.

We have also

0 Hd−1
m

(
R�(a1 + a2)

)
Hd

m(R) Hd
m

(
R�a1

)
⊕Hd

m

(
R�a2

)

0 Hd−1
m

(
R�(a1 + a2)

)
Hd

m(R) Hd
m

(
R�a1

)
⊕Hd

m

(
R�a2

)ρL ρM ρR

Set η ∈ Hd
m(R) with ρM (η) = 0. Perform a diagram chase to see that η = 0.

Theorem 1.7.22 (Quy-Shimomoto). Let (R,m) be a local ring with ideals a1 and a2. If R�a1
and R�a2

are

F -injective and R�(a1 + a2) is anti-nilpotent, then R�(a1 ∩ a2) is F -injective.

Proof. Consider the short exact sequence

0→ R�(a1 ∩ a2)→
R�a1

⊕R�a2
→ R�(a1 + a2)→ 0.

The long exact sequence becomes

· · · → Hi−1
m

(
R�(a1 + a2)

)
δ−→ Hi

m

(
R�(a1 ∩ a2)

)
→ Hi

m

(
R�a1

)
⊕Hi

m

(
R�a2

)
→ · · ·

Use this to write the following commutative diagram.

0 im δ Hi
m

(
R�(a1 ∩ a2)

)
Hi

m

(
R�a1

)
⊕Hi

m

(
R�a2

)

0 im δ Hi
m

(
R�(a1 ∩ a2)

)
Hi

m

(
R�a1

)
⊕Hi

m

(
R�a2

)ρ

The key observation is that by the first isomorphism theorem,

im δ ∼= Hi
m

(
R�(a1 ∩ a2)

)
�ker δ,

and note that ker δ is F -stable. As R�(a1 ∩ a2) is anti-nilpotent by hypothesis, ρ is injective, and the proof

follows by a diagram chase.
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Remark 1.7.23. One might wonder what the hypotheses of Theorem 1.7.21 [Schwede] and Theorem
1.7.22 [Quy-Shimomoto] are actually requiring, perhaps in a geometric sense. If we set X = SpecR,

then a1 and a2 define subschemes of X. Let Y1 = SpecR�a1
and Y2 = SpecR�a2

be these subschemes, or
respectively Y1 = V (a1) and Y2 = V (a2). Recall that V (a1+a2) = V (a1)∩V (a2), V (a1∩a2) = V (a1)∪V (a2),
and V (0) = X.

Definition 1.7.24 (F -injective 2). Call a scheme X F -injective if all local rings are F -injective.

Definition 1.7.25 (Cohen-Macaulay 3). Call a scheme X Cohen-Macaulay if all local rings are Cohen-
Macaulay.

Corollary 1.7.26. If X is a reduced scheme which is a union of two subschemes Y1 and Y2 with dimX =
dimY1 = dimY2, Y1 and Y2 are Cohen-Macaulay schemes, and Y1, Y2, and Y1 ∩ Y2 are F -injective schemes,
then X is an F -injective scheme.

Remark 1.7.27. This gives another proof that R = k[x, y, z, w]m�(xy, xz, y(z − w2)) is F -injective. (See

Example 1.7.13.) Indeed,

(xy, xz, y(z − w2)) = ((x, y) ∩ (z, y)) ∩ (x, z − w2)

= (y, xz) ∩ (x, z − w2)

= a1 ∩ a2,

and a1+a2 = (y, x, z−w2). Each hypothesis of Corollary 1.7.26 can be checked to see that R is F -injective.

1.8 F -rational Rings

Definition 1.8.1 (F -rational). A local ring (R,m) of dimension d is F -rational provided both
1. R is Cohen-Macaulay; i.e., Hi

m(R) = 0 for i < dimR, and
2. Hd

m(R) is simple as an R{F}-module; i.e., there are no proper F -stable submodules of Hd
m(R).

Example 1.8.2. R = k[x1, ..., xd]m is F -rational. We saw in Example 1.6.2 that the only F -stable
submodule of Hd

(x1,...,xd)(R) is itself.

Example 1.8.3. If R = k[x, y, z]m�(x3 + y3 + z3), then the socle of H2
m(R) is F -stable and proper. Hence,

R is not F -rational.

Theorem 1.8.4. If R is an F -rational local ring, then R is F -injective.

Proof. As R is Cohen-Macaulay, we only need to check that the Frobenius action on Hd
m(R) is injective.

Note that
[

1
x1···xd

]
6= 0 in Hd

m(R), as otherwise there is a k such that (x1 · · ·xd)k ∈ (x1
k+1, ..., xd

k+1) by

Lemma 1.5.10. This violates the Monomial Conjecture (now a Theorem).

This also shows that ρ
([

1
x1···xd

])
=
[

1
x1

p···xd
p

]
6= 0; i.e., ker ρ 6= Hd

m(R). Recall that ker ρ is F -stable.

As R is F -rational, ker ρ = 0, so R is F -injective, as desired.

Remark 1.8.5. The converse fails. Let R = k[x, y, z]m�(x3 + y3 + z3). By ☡ Warning! 1.6.12, R is

F -split when p ≡ 1 mod 3, and by Lemma 1.7.1, in that case, R is F -injective. However, by Example
1.8.3, R is not F -rational.

Remark 1.8.6. Thus far, we have the following diagram of implications:

F -rational

F -split F -injective

anti-nilpotent

Theorem 1.8.4

Lemma 1.7.1

Proof of Theorem 1.6.3 [Ma]
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None of the implications above can be reversed, but we haven’t yet seen an F -injective and not anti-nilpotent
ring.

Example 1.8.7 (Enescu-Hochster). Let k be an infinite perfect field of characteristic p > 2. Let K = k(u, v).

Let L = K[y]�(y2p − uyp − v). Let R = K + xLJxK ⊆ LJxK. R is a complete, one-dimensional domain. We

will see that R if F -injective, but R is not anti-nilpotent.

Indeed, one first uses field theory to check that L�K has infinitely man F -stable K-subspaces. Next,
consider the short exact sequence

0→ R→ LJxK→ L�K → 0.

This induces in the long exact sequence

0 L�K H1
m(R) H1

m(LJxK) 0

H0
m

(
L�K

)∼=

This embeds L�K into the socle of H1
m(R); i.e., this promotes the F -stable K-subspaces of L�K to F -stable

R-submodules of H1
m(R). Therefore, R is not anti-nilpotent, by Theorem 1.6.6 [Enescu-Hochster].

On the other hand, both Frobenius actions on L�K and H1
m(LJxK) are injective. This lets us conclude

that R is F -injective.

Definition 1.8.8 (nilpotent). A map f : A → B is nilpotent if for each a ∈ A, there exists e � 0 such
that fe(a) = 0.

Remark 1.8.9. Even though F -rational implies F -injective by Theorem 1.8.4 but F -injective does not
imply anti-nilpotent by Remark 1.8.5, we can reverse implications if we add another hypothesis. If (R,m)
is an F -injective local ring, then by definition ρ : Hi

m(R) → Hi
m(R) is injective for i < dimR. For (R,m)

further to be F -rational, we need to conclude that Hi
m(R) = 0. Note that if ρ is nilpotent and injective,

then Hi
m(R) = 0.

Note, however, that the Frobenius action on Hd
m(R) is never nilpotent.

Theorem 1.8.10 (Smith). For an excellent local domain (R,m) of dimension d, the largest F -stable sub-
module of Hd

m(R) is

0∗Hd
m(R) =

{
η ∈ Hd

m(R) | there exists c 6= 0 such that cρe(η) = 0 for e� 0
}
,

which is clearly F -stable.

Corollary 1.8.11. We say a domain R is F -rational if and only if R is Cohen-Macaulay and 0∗Hd
m

= 0.

Definition 1.8.12 (Srinivas-Takagi, F -nilpotent). A local domain (R,m) of dimension d is called F -
nilpotent provided the Frobenius action on Hi

m(R) is nilpotent for i < dimR, and on 0∗Hd
m(R) is nilpotent.

Remark 1.8.13. This condition was also studied earlier by Blickle, et. al. F -nilpotence is deeply related
to various “Hodge theoretic” conditions in characteristic 0.

Lemma 1.8.14. Let (M,ρ) be an R{F}-module. If ρ is injective and nilpotent, then M = 0.

Proof. Let η ∈M . By hypothesis, ρe(η) = 0 for e� 0. As ρ is injective, η = 0.

Theorem 1.8.15 (Srinivas-Takagi). A local domain (R,m) is F -rational if and only if it is F -injective and
F -nilpotent.

Proof. Set (M,ρ) = Hi
m(R) for i < dimR or 0∗Hd

m(R). So (M,ρ) = 0 if and only if ρ is injective and

nilpotent.
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Remark 1.8.16. We may now supplement Remark 1.8.6:

F -rational

F -split F -injective

anti-nilpotent

Theorem 1.8.4

Lemma 1.7.1

Proof of Theorem 1.6.3 [Ma]

+F -nilpotent, Theorem 1.8.15 [Srinivas-Takagi]

Remark 1.8.17. Since we have discussed the techniques of deformation and gluing, one may ask: what
happens for anti-nilpotent, F -rational, and F -nilpotent rings?

Any subquotient of an anti-nilpotentR{F}-module (M,ρ) is also anti-nilpotent. This forces anti-nilpotent
singularities to glue.

Also, anti-nilpotent deforms. Both gluing and deformation come from [Quy-Shimomoto].

Theorem 1.8.18. F -rational deforms. That is, let (R,m) be a local ring with x ∈ m regular. If R�xR is
F -rational, then R is F -rational.

Proof. Note that if R�xR is F -rational, then R�xR is Cohen-Macaulay and F -injective. Cohen-Macaulay
deforms by Problem Set 3 #4, and R being Cohen-Macaulay implies F -injective deforms by Theorem
1.7.11. In fact, since R is Cohen-Macaulay and F -injective, we have

0 Hd−1
m

(
R�xR

)
Hd

m(R) Hd
m(R) 0

0 Hd−1
m

(
R�xR

)
Hd

m(R) Hd
m(R) 0

ρe

·x

xpe−1ρe ρe

and xp
e−1ρe is injective for all e� 0. Set N ⊆ Hd

m(R) to be F -stable. Consider

N ⊇ xN ⊇ x2N ⊇ x3N ⊇ · · · ,

which stabilizes, as Hd
m(R) is artinian, to

L =
⋂
t∈W

xtN.

Note L = xL. If L = 0, then xp
e−1ρe(N) ⊆ xp

e−1N = L = 0 for e � 0. However, xp
e−1ρe is injective for

e� 0, so N = 0.
On the other hand, we want a contradiction if L 6= 0. Suppose so. First, consider the following claim:

Claim. L ∩Hd−1
m

(
R�xR

)
6= 0 in Hd

m(R).

Proof. Warning: one or both of these proofs is wrong. Write L = xtN 6= xt−1N . Pick η′′ ∈ xt−1N ;
then η′ = xη′′ ∈ L and η = xη′ ∈ L. Therefore η = xη′ = x2η′′, so x(η′ − xη′′) = 0, and thus

0 6= η′ − xη′′ ∈ L ∩ ker(·x) = L ∩Hd−1
m

(
R�xR

)
.

• • •

Note ker(·x) ⊆ L. Let η ∈ ker(·x), so xtη = 0 for all t� 0, and xtη ∈ xtN = L. As L is F -stable,
ρe(xtη) ∈ L, so xp

e−1ρe(η) ∈ L, which is 0, but xp
e−1ρe is injective.
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If the claim holds, then 0 6= L ∩ Hd−1
m

(
R�xR

)
⊆ Hd−1

m

(
R�xR

)
is proper and F -stable. Therefore,

Hd−1
m

(
R�xR

)
⊆ L.

Next, note that H
d
m(R)�L

·x−→ Hd
m(R)�L is injective. Indeed, ker(·x) = Hd−1

m

(
R�xR

)
. Write L = xtN 6=

xt−1N ; then η ∈ xt−1N \ {0} is in ker(·x) on Hd
m(R)�L, a contradiction.

If xη ∈ L, then xp
e−1ρe(η) = L, but ker(·x) ⊆ L, so the restriction of xp

e−1ρe to H
d
m(R)�L is injective,

so η ∈ L.

Remark 1.8.19. F -nilpotent does not deform in general. Let R = k[x, y, z]m�(x2 + y3 + z7 + xyz). One

can check R�zR ∼=
k[x, y]m�(x2 + y3) is F -nilpotent (in fact, F -rational), but R is not F -nilpotent.

Remark 1.8.20. What about gluing? Note that F e∗− is exact as a functor. That is, Hi
m(F e∗R) ∼= F e∗H

i
m(R)

as F e∗R-modules for all i (a fact we have been implicitly using). If R is regular, then

F e∗H
i
m(R) ∼= Hi

m(R)⊗R F e∗R

by flatness of F e∗R (Theorem 1.1.24 [Kunz]). But in general,

F e∗H
dimR
m (R) ∼= HdimR

m (R)⊗R F e∗R

for any local ring (R,m), since tensor product is right exact.

Definition 1.8.21 (0∗M ). Let R be a local domain. For an R{F}-module (M,ρ), define

0∗M = {m ∈M | there exists c 6= 0 such that cρe(m) = 0 for some e� 0}.

Remark 1.8.22. Recall that ρe : M →M defines an R-linear map M →M ⊗ F e∗R by m 7→ ρe(m)⊗ F e∗ 1.
For any c 6= 0, we have a composition

µec : M
ρe⊗F e

∗ 1−−−−−→M ⊗ F e∗R
id⊗·F e

∗ c−−−−−→M ⊗ F e∗R,

and m ∈ 0∗M if and only if m ∈ kerµec for e� 0.

Remark 1.8.23. Given an R{F}-module (M,ρ), 0∗M is nilpotent if and only if for each m ∈ 0∗M , there
exists e� 0 such that ρe(m) = 0.

Lemma 1.8.24. For R{F}-modules A and B, 0∗A⊕B
∼= 08

A ⊕ 0∗B.

Proof. For c 6= 0,

A⊕B (A⊕B)⊗ F e∗R (A⊕B)⊗ F e∗R

A⊗ F e∗R⊕B ⊗ F e∗R A⊗ F e∗R⊕B ⊗ F e∗R

∼= ∼=

Theorem 1.8.25 (Maddox-Miller). If (R,m) is a domain with ideals a1 and a2 such that

1. dim
(
R�(a1 ∩ a2)

)
= dim

(
R�a1

)
= dim

(
R�a2

)
= dim

(
R�a1 + a2

)
, and

2. R�a1
, R�a2

, and R�a1 + a2
are F -nilpotent,

then R�a1 ∩ a2
is F -nilpotent.

Proof. First, fix i < dimR. We have a short exact sequence

0→ R�a1 ∩ a2
→ R�a1

⊕R�a2
→ R�a1 + a2

→ 0.

Apply RΓm to get the long exact sequence

· · · → Hi−1
m

(
R�a1 + a2

)
δ−→ Hi

m

(
R�a1 ∩ a2

)
α−→ Hi

m

(
R�a1

)
⊕Hi

m

(
R�a2

)
→ · · ·

By splitting up the long exact sequence, we have
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0 im δ Hi
m

(
R�a1 ∩ a2

)
imα 0

kerα

∼=

Note that for any short exact sequence of R{F}-modules

0→M → N → P → 0,

if M and P are nilpotent, then N is nilpotent. Since im δ and imα are nilpotent, Hi
m

(
R�a1 ∩ a2

)
is nilpotent.

Thus, the case i < dimR is shown.
Now, assume i = dimR = d. We have

Hd−1
m

(
R�a1 + a2

)
δ−→ Hd

m

(
R�a1 ∩ a2

)
α−→ Hd

m

(
R�a1

)
⊕Hd

m

(
R�a2

)
.

Let ξ ∈ 0∗
Hd

m(R�a1∩a2)
. That is, there exists c 6= 0 and e� 0 such that cρe(ξ) = 0. Note

α(ξ) ∈ 0∗
Hd

m(R�a1)⊕Hd
m(R�a2)

,

as α(cρe(ξ)) = cρe(α(ξ)) = 0 using the commutativity of

Hd
m

(
R�a1 ∩ a2

)
Hd

m

(
R�a1

)
⊕Hd

m

(
R�a2

)

Hd
m

(
R�a1 ∩ a2

)
Hd

m

(
R�a1

)
⊕Hd

m

(
R�a2

)
α

cρe cρe

α

By Lemma 1.8.24,

0∗
Hd

m(R�a1)⊕Hd
m(R�a2)

∼= 0∗
Hd

m(R�a1)
⊕ 0∗

Hd
m(R�a2)

.

One can check that, since 0∗
Hd

m(R�a1)
and 0∗

Hd
m(R�a2)

are nilpotent, there exists e� 0 such that ρe(α(ξ)) = 0.

Next, consider

ξ α(ξ)

Hd−1
m

(
R�a1 + a2

)
Hd

m

(
R�a1 ∩ a2

)
Hd

m

(
R�a1

)
⊕Hd

m

(
R�a2

)

Hd−1
m

(
R�a1 + a2

)
Hd

m

(
R�a1 ∩ a2

)
Hd

m

(
R�a1

)
⊕Hd

m

(
R�a2

)
ρe(ξ) 0

ρe

δ

ρe

α

ρe

Let ζ ∈ Hd−1
m

(
R�a1 + a2

)
with δ(ζ) = ξ. Since d = dim

(
R�a1 + a2

)
, Hd−1

m

(
R�a1 + a2

)
is nilpotent. Thus,

there exists e′ � 0 such that ρe
′
(ζ) = 0, and thus

ρe+e
′
(ξ) = ρe

′
ρe(ξ) = ρe

′
δ(ζ) = δρe

′
(ζ) = 0.

Thus, R�a1 ∩ a2
is F -nilpotent, as desired.

Corollary 1.8.26. Let X be an equidimensional scheme which is a union of two schemes X = Y1 ∪ Y2. If
Y1, Y2, and Y1 ∩ Y2 are F -nilpotent, and if dimX = dimY1 = dimY2 = dimY1 ∩ Y2, then X is F -nilpotent.

Corollary 1.8.27. The same theorem holds for F -rational.

Proof. F -rational singularities are Cohen-Macaulay, F -injective, and F -nilpotent.
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1.8.1 Local Algebra

Remark 1.8.28. One may ask: what does controlling singularities buy us? That is, what does
knowing deformation, gluing, or quotient results allow us to do?

Remark 1.8.29. Recall that for a local ring (R,m, k), each R�mn is a finite dimensional k-vector
space.

Definition 1.8.30 (length). Let (R,m) be a local ring. Define the length of R�mn, λ
(
R�mn

)
,

to be the k-dimension of R�mn. That is,

λ
(
R�mn

)
= dimk

(
R�mn

)
.

Remark 1.8.31. The function n 7→ λ
(
R�mn

)
is eventually a polynomial in n of degree nd, where

d = dimR. It is called the Hilbert polynomial.

Definition 1.8.32 (multiplicity). One can set

e(R) = lim
n→∞

d!λ
(
R�mn

)
nd

.

Call e(R) the (Hilbert-Samuel) multiplicity of (R,m).

Example 1.8.33. Let R = k[x1, ..., xd]m. We have λ
(
R�mn

)
=
(
n+d
d

)
= nd

d! + O(nd−1), so

e(R) = 1.

Example 1.8.34. If R = k[x, y]m�(y2 − x2 − x3), then e(R) = 2.

Example 1.8.35. If R = k[x, y]m�(y2 − x3), then e(R) = 2.

Example 1.8.36. If R = k[x, y]m�(y31 − x10), then e(R) = 10.

Remark 1.8.37. A larger multiplicity e(R) implies a worse singularity of R.

Remark 1.8.38. One can show that λ
(
R�mn

)
= λ

(
R̂�mnR̂

)
. Thus, by Theorem 1.3.7 [Co-

hen Structure Theorem], if R is regular, then e(R) = 1. The converse does not hold.

Example 1.8.39. If R = k[x, y, z]m�(xy, xz), then e(R) = 1, but R is not regular.

Theorem 1.8.40 (Nagata). Let R̂ be equidimensional. R is regular if and only if e(R) = 1.

Theorem 1.8.41 (Huneke-Watanabe). Let (R,m) be a local ring of dimension d and embedding
dimension ν.

1. If R is F -split, then e(R) ≤
(
ν
d

)
.

2. If R is F -rational, then e(R) ≤
(
ν−1
d−1

)
.

Definition 1.8.42 (reduction). A reduction of m is an ideal J such that mn = Jmn−1 for n� 0.

Definition 1.8.43 (minimal reduction). We call a reduction J minimal if it is minimal with
respect to inclusion. That is, if J ′ is any other reduction of m, then J ⊆ J ′.

Remark 1.8.44 (Briano̧n-Skoda). A theorem by Briano̧n-Skoda has the following consequence: if
(R,m) is F -rational of dimension d and J is a minimal reduction of m, then md ⊆ J . Additionally,
one can fairly easily show that if (R,m) is F -split, then md+1 ⊆ J .
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Remark 1.8.45. The above tools are used to prove Theorem 1.8.41. Set minimal generators
x1, ..., xd, y1, ..., yν−d for m. Let J = (x1, ..., xd) be a minimal reduction. Consequently, if (R,m) is

F -rational, then R�J has k-span comprised of monomials in y1, ..., yν−d of degree at most d− 1. If

(R,m) is F -split, then R�J has k-span comprised of monomials in y1, ..., yν−d of degree at most d.
This gives

λ
(
R�J

)
≤

{(
ν−1
d−1

)
if (R,m) is F -rational;(

ν
d

)
if (R,m) is F -split.

Theorem 1.8.46 (Katzman-Zhang). If (R,m) is a Cohen-Macaulay F -injective local ring, then
e(R) ≤ pη

(
ν
d

)
, for a specific η.

Remark 1.8.47. The proof of Theorem 1.8.46 uses an important fact. For an R{F}-module
(M,ρ), set

0ρM = {m ∈M | ρe(m) = 0 for some e} ⊆M.

Set

HSL(M) = inf
e
{0ρM = ker ρe},

which need not be finite. (Indeed, consider M = Hi
a(R). If M is not noetherian or artinian,

{ker ρe} may fail to stabilize.)

Theorem 1.8.48 (Hartshorne-Speiser-Lyubeznik). If (M,ρ) is artinian, then HSL(M) <∞.

Remark 1.8.49. The specific η in Theorem 1.8.46 is η = max
i
{HSL(Hi

m(R))}.

Remark 1.8.50. A natural question is the following: if (R,m) is F -nilpotent, is e(R) bounded by
some function of d, ν, and η?

1.9 F -regular Rings

Remark 1.9.1. There is another way to characterize 0∗Hd
m(R) = 0. Let R be a Cohen-Macaulay domain.

For each c 6= 0, if cρe is injective for some e� 0, then by construction, 0∗Hd
m(R) = 0.

Definition 1.9.2 (strongly F -regular). A domain (R,m) is strongly F -regular provided that for each
c 6= 0, there exists e� 0 such that

R→ F e∗R

1 7→ F e∗ c

splits. (Slogan: a strongly F -regular ring has lots of splittings.)

Remark 1.9.3. For now, we drop “strongly,” and refer to such rings as F -regular. Be warned that this will
eventually clash with Definition 1.13.106 [F -regular].

Example 1.9.4. Regular rings are F -regular.

Example 1.9.5. Though we do not yet have the tools to verify this, the ring R = k[x, y, z]m�(x2 + y2 + z2)
is not regular, though it is F -regular.

Theorem 1.9.6. If (R,m) is F -regular, then it is F -rational.

Proof. We first show that (R,m) is Cohen-Macaulay. To see this, we will use a fact to be proven later
(Corollary 1.10.48), using local/Matlis duality:
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Claim. For each i < dimR, there exists c 6= 0 such that cHi
m(R) = 0; i.e., AnnHi

m(R) 6= 0.

Assuming this claim, choose e > 0 such that

R F e∗R F e∗R

1 F e∗ 1 F e∗ c

·F e
∗ c

splits. Apply Hi
m− to get

Hi
m(R)→ F e∗ (cHi

m(R)) = 0,

which is injective, so Hi
m(R) = 0. For each c 6= 0, cρe is injective on HdimR

m (R), so we have 0∗HdimR
m (R) = 0,

so (R,m) is F -rational.

Remark 1.9.7. It’s easy to see that if R ↪→ S is a split extension of domains with S an F -regular ring,
then R is F -regular. It’s also clear that F -regular implies F -split, by choosing c = 1.

Remark 1.9.8. Once more, we may add to the diagram from Remark 1.8.16:

F -regular F -rational

F -split F -injective

anti-nilpotent

Theorem 1.9.6

Remark 1.9.7
Theorem 1.8.4

Lemma 1.7.1

Proof of Theorem 1.6.3 [Ma]

+F -nilpotent, Theorem 1.8.15 [Srinivas-Takagi]

Remark 1.9.9. The implication in Remark 1.9.7 cannot be reversed. The ringR = k[x, y, z]�(x3 + y3 + z3)
is F -split for p ≡ 1 mod 3, but R is not F -regular.

Theorem 1.9.10 (Glassbrenner’s Criterion). If (S,m) is a regular and p ⊆ S is a prime ideal, then R = S�p
is F -regular if and only if for each c 6∈ p, there exists e > 0 such that c(p[pe] : p) 6⊆ m[pe].

Remark 1.9.11. Notice the similarities to Corollary 1.4.24 [Fedder’s Criterion]. The proof is similar.

Theorem 1.9.12. Being F -regular is a local property. That is, for a domain R, R is F -regular if and only
if (Rm,m, k) is F -regular for all maximal ideals m.

Proof. It’s clear that R is F -regular implies (Rm,m, k) is F -regular for all m.
On the other hand, set c 6= 0. Fix a maximal ideal m. The map Rm → F e∗Rm defined by 1 7→ F e∗ c splits

for e� 0, and the value of e depends on m. That is,

HomRm
(F e∗Rm, Rm)

evFe
∗ c−−−−→ Rm

is surjective for e � 0 depending on m. Pick a neighborhood Um ⊆ max SpecR so that evF e
∗ c

is surjective
for all n ∈ Um; i.e., there is one value of e that works for all n ∈ Um.

Note the following topological fact: max SpecR is quasi-compact in the Zariski topology.
Pick a finite subcover of {Um} and take a single e that works to have evF e

∗ c
surjective for all m.

Remark 1.9.13. Note that in Theorem 1.4.55 [Grifo-Huneke], we saw that symbolic powers were
a useful tool in studying F -split rings. Namely, we saw that if S is a regular ring, a ⊆ S is an ideal

with bight a = h, and S�a is F -split, then a(hn−h+1) ⊆ an for n ≥ 1. The proof used Corollary 1.4.24
[Fedder’s Criterion]. One might wonder: can we use Theorem 1.9.10 [Glassbrenner’s Criterion] to
show something similar for F -regular rings?

Theorem 1.9.14 (Grifo-Huneke). If S is a regular ring, p ⊆ S is a prime ideal with ht p = h ≥ 2, and S�p
is F -regular, then for n ≥ 1, p(n(h−1)+1) ⊆ pn+1.

42



Corollary 1.9.15. If h = 2, then p(n) = pn for all n ≥ 2.

Theorem 1.9.16. Let S be F -regular. If S ⊆ R is a module finite extension; i.e., R is a finitely generated
S-module, then the extension splits.

Definition 1.9.17 (splinters). A ring S is called a splinter provided if S ⊆ R is a module finite extension,
then the extension splits.

Remark 1.9.18. Hochster stated the Direct Summand Conjecture: every regular ring in any setting (char-
acteristic p > 0, characteristic 0, mixed characteristic) is a splinter. Some specific cases are quite tractable.
If S = k[x1, ..., xn] with char k = 0, then S is a splinter. For any extension S ⊆ R of domains, there is a
trace map on fraction fields:

FracR
Tr−−→ FracS

x 7→ Trx.

It’s not hard to see imTr|R ⊆ S. Set n = [FracR : FracS]. Consequently,

S R S

1 1 1
nn

1
nTr

is a splitting. Hochster additionally proved the Direct Summand Conjecture in characteristic p. The difficult
case was mixed characteristic.

Definition 1.9.19 (mixed characteristic). A local ring (R,m, k) is mixed characteristic if charR = 0 but
char k = p > 0.

Example 1.9.20. (Z(p), (p),Fp) is mixed characteristic. The p-adics are also mixed characteristic, as are
polynomials over these, quotients, etc.

Theorem 1.9.21 (André). The Direct Summand Conjecture holds.

Remark 1.9.22. The proof uses Scholze’s perfectoid spaces, coming from number theory and p-derivations.
The methods are similar, in some sense, to the proof of Theorem 1.1.24 [Kunz], using Rperf = lim−→

F

R.

Remark 1.9.23. Note that all regular domains are F -regular in characteristic p > 0. To see this, for
any c 6= 0, pick a basis for F e∗R where F e∗ c is a basis element. Hence we can prove the Direct Summand
Conjecture in positive characteristic by showing the following.

Theorem 1.9.24. F -regular rings are splinters.

Proof. Suppose S is F -regular, and suppose S ⊆ R is module finite. For simplicity, assume R is a domain,

and identify the Frobenius as R→ R
1
pe and S → S

1
pe via pe

th

roots. For e > 0 and a map ϕ : S
1
pe → S, we

get a diagram

ψ R ↪→ R
1
pe

ψ−→ S
1
pe

ϕ−→ S

Hom
(
R

1
pe , S

1
pe

)
Hom(R,S)

S
1
pe S

ev
1

1
pe

ev1

ϕ

Our goal is to show that ev1 is surjective. Pick c 6= 0 in im ev1, which exists as R and S are domains. We
can consider

Hom(FracR,FracS)
Frac ev1−−−−−→ FracS,
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which is surjective because FracR ⊆ FracS splits, as they’re fields. Pick a nonzero c ∈ im(Frac ev1) and

clear denominators. Pick e� 0 and ϕ so that ϕ
(
c

1
pe

)
= 1. This makes the composition

ϕev
1

1
pe

: Hom
(
R

1
pe , S

1
pe

)
→ S

a surjection, and thus by the diagram above, Hom
(
R

1
pe , S

1
pe

)
→ Hom(R,S)

ev1−−→ S is a surjection, and

therefore ev1 is surjective, as desired.

Remark 1.9.25. One might ask if the converse to Theorem 1.9.24 holds. Are all splinters in characteristic
p > 0 F -regular rings? This is an open problem.

1.10 Local Duality and Gorenstein Rings

Remark 1.10.1. Our goal now is to take the diagram from Remark 1.9.8 and begin to add hypotheses
that will reverse some of the other implications.

Remark 1.10.2. Recall Definition 1.5.43 [essential submodule of an essential extension of R-modules
M ⊆ E. We have seen in Remark 1.5.45 and Remark 1.5.5 that socHi

m(R) ⊆ Hi
m(R) is an essential

extension.

Definition 1.10.3 (injective module). An injective module is a module E such that Hom(−, E) is exact.
Equivalently, given any injection N →M and map N → E, there exists a map M → E making the following
diagram commute.

E

0 N M

Remark 1.10.4. The category R-mod has enough injectives; i.e., every R-module M embeds in an injective
module E.

Definition 1.10.5 (injective hull). Every module M has an essential extension M ⊆ E with E an injective
module. Such an E is unique up to unique isomorphism. Denote this isomorphism class by E(M) and call
E(M) the injective hull of M .

Remark 1.10.6. Let (R,m, k) be a local ring. Special attention is paid to E(k), the injective hull of the
residue field. We write ER(k) for E(k).

Example 1.10.7.
1. E(Z) = Q.

2. E
(
Z�pZ

)
= Z[p−1]�Z.

Example 1.10.8. If (R,m, k) is a 1-dimensional domain with FracR = K, then there is a short exact
sequence

0 R K ER(k) 0

K�R

∼=

Example 1.10.9. Let R = k[x]m, one can write ER(k) as ER(k) ∼= x−1k[x−1] ∼= H1
m(R). A similar statement

holds for R = k[x1, ..., xd]m; i.e., ER(k) ∼= Hd
m(R).

Remark 1.10.10. We have the following basic facts about injective modules:
• Any direct sum of injective modules is injective.
• Any direct summand of an injective module is injective.
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Lemma 1.10.11. Let E be an R-module. The following are equivalent:
1. E is injective,
2. every injection E → N splits, and
3. E has no proper essential extensions.

Proof. For 1 implies 2, let E → N be an injection and use the lift given by

E

0 E N

id

Hence N → E is a splitting.
For 2 implies 3, if E ⊆ N , then N ∼= E ⊕ E′. This is essential if and only if E′ = 0, by Definition

1.5.43 [essential submodule].
For 3 implies 1, assume for the sake of contradiction that E is not injective. Pick E ⊆ E′ with E′

injective. This is not an essential extension, so “Zornify” the set

{M ⊆ E′ |M ∩ E = 0}

to get a maximal N ⊆ E′ such that E ∩N = 0. Thus E → E′�N is essential, and E′ ∼= E ⊕N . Thus, E is
injective, a contradiction.

Lemma 1.10.12. If (R,m, k) is a local ring, then ER(k) is m-torsion and HomR(k,ER(k)) ∼= k.

Proof. It is clear that Ass(k) = Ass(ER(k)), as any x ∈ E with E�xE ∼=
R�p for some prime p has a multiple

in k ⊆ ER(k). Hence R�p ∼= R�m. Thus ER(k) is m-torsion, as desired.

Next, note that k ⊆ (0 :E m) ⊆ ER(k), but if k 6= (0 :E m), then the first inclusion splits, yet this would
contradict the fact that ER(k) is essential via Lemma 1.10.11. Thus, HomR(k,ER(k)) ∼= (0 :E m) = k.

Remark 1.10.13. One application of the fact that R-mod has enough injectives, and has injective hulls in
particular, is that we can use them to build injective resolutions. The resolution

0 0

K0

0 M E0 = E(M) E1 = E(K0) E2 = E(K1) · · ·

K1

0 0

is the minimal injective resolution of M .

Theorem 1.10.14 (Bass Structure Theorem). If R is noetherian and E is injective, then

E ∼=
⊕

p∈SpecR

ER

(
R�p

)⊕µp

where

µp = dimR�p
HomRp

(
R�p, ER

(
R�p

))
.
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Additionally, for the minimal injective resolution 0→M → E•, one has

Ei ∼=
⊕

p∈SpecR

ER

(
R�p

)⊕µ(i,p)

.

One calls the number µ(i, p) the Bass number. For a module M , we have

µ(i, p)(M) = dim Exti(k(p),Mp).

Example 1.10.15. For R = S�a with Sm a localization of a polynomial ring of dimension n, one has

λij = µ(i,m)(Hn−j
a (R)) = dim ExtiS

(
k,Hn−j

a (R)
)
.

The numbers λij are called Lyubeznik numbers. These are independent of the presentation of R, and they
capture topological information about SpecR.

Remark 1.10.16. A pressing question: how can we actually calculate ER(k) for a given local ring (R,m, k)?

Theorem 1.10.17. If (S,m, k)→ (R, n, `) is a map of local rings, then HomS(R,ES(k)) ∼= ER(`).

Proof. First suppose R ∼= S�a. If E is an injective S-module, then HomR(R,E) is an injective R-module.
This is because R is flat, so −⊗S R is exact, and by hom-tensor adjunction, HomS(−, E) is exact.

Also using hom-tensor adjunction, we have

HomR(−,HomS(R,E)) ∼= HomR(−, E).

Now consider the case that (S,m, k) � (R, n, `) with mR = n (i.e., a local extension). In other words,
assume S is a localization of a polynomial ring. Apply the above calculation to E = ES(k), and see that
HomR(R,ES(k)) is an injective R-module. It is also clearly n-torsion, since ES(k) is m-torsion.

By Theorem 1.10.14 [Bass Structure Theorem], µp(HomS(R,ES(k)) = 0 unless p = n. Therefore,

HomS(R,ES(k)) ∼= ER(`)⊕t.

The result follows if we can show t = 1.
Note that t = dim HomR(`,HomS(R,ES(k))) and

HomR(`,HomS(R,ES(k))) ∼= HomS(`⊗R R,ES(k))
∼= HomS(`⊗ k,ES(k))
∼= Homk(`⊗ k,ES(k))
∼= Homk(`,Hom(k,ES(k)))
∼= Homk(`, k).

Thus, t = 1, as desired.

Remark 1.10.18. Recall that for a finite dimensional k-vector space V , there is a canonical isomorphism
V ∨ = Homk(V, k) ∼= V . Furthermore, V ∼= (V ∨)∨. One might generalize from vector spaces over a field to
modules over a ring, and ask if, given an R-module M , is HomR(M,R) ∼= M?

Theorem 1.10.19 (Matlis). Let (R,m, k) be a local ring. Set (−)∨ = HomR(−, E) where E = ER(k).
1. The functor (−)∨ is contravariant and fully faithful.
2. If N is artinian, then N∨ is noetherian, and N∨∨ ∼= N .
3. If N is noetherian, then N∨ is artinian, and N∨∨ ∼= N̂ .
4. When R is complete, (−)∨ induces an equivalence of categories

{noetherian R-modules} ∼←→ {artinian R-modules}.

Remark 1.10.20. Since E is injective, (−)∨ is exact.
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Remark 1.10.21. Matlis duality, along with the following fancier (i.e., derived) duality, will be powerful
tools.

Definition 1.10.22 (dualizing complex). For a noetherian ring R, a dualizing complex is an object
ω•R ∈ obj(D(R)) such that

1. ω•R is quasi-isomorphic to a bounded complex of injective modules, and
2. the natural map C• → R Hom(R Hom(C•, ω•R), ω•R) is a quasi-isomorphism for all C• ∈ obj(D(R)).

Remark 1.10.23. Condition 2 above is notably hard to check, but it can be replaced. It is equivalent to
say that ω•R is a dualizing complex provided 1 holds and that R Hom(ω•R, ω

•
R) ∼= R. Roughly, to see this, use

R HomR(ω•R, ω
•
R)⊗L C• ∼= R Hom(R Hom(C•, ω•R), ω•R).

This is a fancy derived version of saying that if E and P are modules, then the natural map

Hom(E,E)⊗ P → Hom(Hom(P,E), E)

ϕ⊗ p 7→ (ψ 7→ ϕ(ψ(p)))

is an isomorphism.

Remark 1.10.24. Any shift of a dualizing complex is a dualizing complex. Furthermore, if ω•R is a dualizing
complex, then ω•R ⊗ P for any rank 1 projective module P is also a dualizing complex.

Definition 1.10.25 (normalized dualizing complex). A dualizing complex ω•R is normalized provided
h− dimR(ω•R) 6= 0 and h−i(ω•R) = 0 for i > dimR.

Definition 1.10.26 (canonical module). Given a normalized dualizing complex of R, ω•R, the canonical
module is ωR = h− dimR(ω•R) 6= 0.

Remark 1.10.27. Note that not all rings have dualizing complexes. However, any ring essentially of finite
type over a field does.

Example 1.10.28. We compute a dualizing complex for R = S�a when S is regular. First, note that when
S is regular, ω•S = S[dimS] is a normalized dualizing complex. To see this, note that S has a finite injective
resolution, as S is regular. Furthermore,

hi(R Hom(ω•S , ω
•
S)) = 0

unless i = −dimS, in which case

h− dimS(R Hom(ω•S , ω
•
S)) = Hom(S, S) ∼= S.

Recall that

hi(R Hom(C•, D•)) ∼= Exti(C•, D•).

We claim that R HomS(R,ω•S) is a dualizing complex for R. Roughly, S is quasi-isomorphic to a bounded
complex of injectives, and HomS(R,E) is an injective R-module when E is an injective S-module, by hom-
tensor adjunction. That is, R Hom(R,ω•S) is quasi-isomorphic to a bounded complex of injectives. Also,

R HomR(R HomS(R,ω•S),R HomS(R,ω•S)) ∼= R HomS(R HomS(R,ω•S)⊗L
R R,ω

•
S)

∼= R HomS(R HomS(R,S)⊗L
R R,S)

∼= R HomS(R HomS(R,S), S)

As S is a dualizing complex, we get

R HomS(R HomS(R,S), S) ∼= S.
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Example 1.10.29. We can also compute a canonical module. By flatness of localization, any localization
of a dualizing complex is again a dualizing complex. As a consequence, every ring essentially of finite type

over a field has a canonical module. Indeed, when R ∼= S�a with S a polynomial ring,

ωR = h− dimR(ω•R) = h− dimR(R Hom(R,S[dimS])) = hdimS−dimR(R Hom(R,S)) = ExtdimS−dimR(R,S).

Remark 1.10.30. We have not yet dealt with completion in the derived sense. Since M is complete when
M → M̂ is an isomorphism, what does it mean to ask for the completion of M• a complex? We can make
sense of

lim←−
n

M•�mnM•,

but lim←−− is not exact. Furthermore, for local rings which are not noetherian, a cokernel of M̂ → N̂ between

complete modules can fail to be complete. In fact,
⋂
n≥1

mn need not be 0.

Remark 1.10.31. There is a more robust notion of completion, not just R lim←−. Recall that for an R-module
M ,

M�mnM ∼= M ⊗R R�mnR.

We can set m = (f1, ..., fs) and view M as a Z[x1, ..., xs]-module via Z[x1, ..., xs]→ R where xi 7→ fi.

Definition 1.10.32 (derived complete). Call M derived complete provided that the natural map

M → M̂der = R lim←−
n

(
M ⊗L

Z[x1,...,xs]
Z[x1, ..., xs]�(x1, ..., xs)

n

)
is a quasi-isomorphism.

Remark 1.10.33. In the case that
⋂
n≥1

mn = 0, then M̂ ∼= M̂der.

Lemma 1.10.34 (Derived Nakayama’s Lemma). Let a be any ideal in any ring R. Let M be an a-derived

complete module. If M�aM = 0, then M = 0.

Remark 1.10.35. Since the map M → M̂der is faithfully flat, M̂der ∼= M ⊗L R̂der.

Theorem 1.10.36 (Local duality). Let (R,m, k) be a noetherian local ring with a dualizing complex ω•R.
Let E = ER(k). For any complex C•,

HomR(R Hom(C•, ω•R), E) ∼= RΓm(C•).

Remark 1.10.37. Applying (derived) Matlis duality to local duality, we get

̂R Hom(C•, ω•R) ∼= R Hom(RΓm(C•), E).

When R is complete, this becomes

R Hom(C•, ω•R) ∼= R Hom(RΓm(C•), E).

Remark 1.10.38. Local duallity has a classical statement. If we apply h−i− to the above conclusion, we
get

h−iR Hom(RΓm(C•), E) ∼= Ext−i(RΓm(C•), E) ∼= Hom(hi(RΓm(C•)), E).

Thus, local duality gives

Ext−i(C•, ω•R) ∼= Hom(Hi
m(C•), E).
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We can apply this to C• ∼= R[0]. We get

Ext−i(R,ω•R) ∼= Hom(Hi
m(R), E).

See that, if R is Cohen-Macaulay, then Hi
m(R) = 0 for i < dimR, so this forces (in fact, it is equivalent

to) Ext−i(R,ω•R) = 0 for i < dimR. This occurs if and only if ωiR = 0 for i 6= dimR. That is, R is
Cohen-Macaulay if and only if ω•R

∼=q ωR[dimR].

Corollary 1.10.39. If R is Cohen-Macaulay, ω•R
∼=q ωR[dimR], and for any R-module M ,

Extd−i(M,ωR) ∼= Hom(Hi
m(M), E).

Remark 1.10.40. We get an even stronger result when ωR ∼= R. For example,

Hom(Hd
m(R), R) ∼= Ext0(R,R) = Hom(R,R) ∼= R.

That is, via another Matlis duality, Hd
m(R) ∼= Hom(R,E) ∼= E.

Definition 1.10.41 (quasi-Gorenstein). A local ring (R,m) with a dualizing complex ω•R is quasi-Gorenstein
(also 1-Gorenstein) if ωR ∼= R.

Definition 1.10.42 (Gorenstein). A local ring (R,m) with a dualizing complex ω•R is Gorenstein if R is
quasi-Gorenstein and Cohen-Macaulay.

Example 1.10.43. If R is a regular local ring, then R is Gorenstein.

Example 1.10.44. Hypersurfaces (complete intersections) are Gorenstein.

Example 1.10.45. Let S = k[x, y, z, a, b, c]�(x3, a3). Let R be the subalgebra generated by xa, xb, xc, ya,

yb, yc, za, zb, and zc. R is quasi-Gorenstein, but dimR = 3 and depthR = 2, so R is not Cohen-Macaulay,
hence not Gorenstein. Such an (obtuse) example is the result of a construction using degree products.

Lemma 1.10.46. If (R,m) is Gorenstein and dimR = d (so ωR ∼= R[d]) and f ∈ m is a regular element,

then R�f is Gorenstein, and

ω•R�f
∼= ωR�fωR[d− 1] ∼= Ext1

(
R�f, ωR[d]

)
.

Proof. We have the short exact sequence

0→ R
·f−→ R→ R�fR→ 0.

After applying R Hom(−, ω•R) = R Hom(−, ωR[d]), we get

R Hom
(
R�f, ωR[d]

)
→ R Hom(R,ωR[d])

·f−→ R Hom(R,ωR[d])
+1−−→ R Hom

(
R�f, ωR[d]

)
,

an exact triangle. Taking cohomology, we get the exact sequence

0 ωR ωR Ext1
(
R�f, ωR

)
0

Hom
(
R�f,R

)
Hom(R,ωR) Hom(R,ωR) Ext1(R,ωR)

Hom
(
R�f, ωR[d]

)

= ∼=

·f

∼= =

∼=

We thus observe Ext1
(
R�f, ωR

)
∼= ωR�fωR, dimension shift by necessity, and ω•R�f

∼= Ext1
(
R�f, ωR

)
by

definition.
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Remark 1.10.47. For any complete local ring (R,m, k) of dimension d with dualizing complex ω•R and
E = ER(k), we have

Hom(Hd
m(R), E) ∼= Ext−d(R,ω•R) ∼= h−d(ω•R) ∼= ωR.

Corollary 1.10.48 (A corollary to local duality). Let (R,m) be a local domain. If i < dimR, then
AnnHi

m(R) 6= 0; i.e., there exists c 6= 0 such that cHi
m(R) = 0.

Proof. Let ω•R be the normalized dualizing complex of R. Without loss of generality, we can assume R is
complete. It suffices to find c 6= 0 so that ch−i(ω•R) = 0. This is sufficient by Matlis/local duality, since as
ω•R is a dualizing complex, R Hom(ω•R, ω

•
R) ∼= R and

ω•R
∼= R Hom(R Hom(ω•R, ω

•
R), ω•R) ∼= R Hom(R,ω•R).

Therefore

ch−i(ω•R) ∼= ch−i(R Hom(R,ω•R)) ∼= ch−i(Hom(RΓm(R), E)) ∼= Hom(chi(RΓm(R)), E).

Recall that Matlis duality is faithful, by Theorem 1.10.19 [Matlis]. Thus ch−i(ω•R) = 0 will force
(cHi

m(R))∨ = 0, and therefore cHi
m(R) = 0.

Finally, note that h−i(ω•R) is finitely generated, so set K = FracR and localize ω•R. We get a complex
ω•K which is supported only in degree −dimR. Thus, the localization of h−i(ω•R) is 0 for i < dimR.

Remark 1.10.49. Recall in Theorem 1.9.6, we made the unproven claim that Corollary 1.10.48 now
takes care of.

Lemma 1.10.50. If (R,m) is a noetherian local ring with a dualizing complex ω•R, then the complex
R HomR(F e∗R,ω

•
R) is a dualizing complex for F e∗R. Call this complex ω•F e

∗R
, and one has that ω•F e

∗R
∼= F e∗ω

•
R.

Definition 1.10.51 (trace of Frobenius). The dual to R
F e

−−→ F e∗R is

Hom(F e∗R,ωR) Hom(R,ωR)

F e∗ωR ωR

∼= ∼=

T e

which is called the trace of Frobenius, T e.

Lemma 1.10.52. For a quasi-Gorenstein ring R, after identifying R ∼= ωR,

T e : F e∗ωR ωR

F e∗R R ∈ Hom(F e∗R,R)

∼= ∼=

generates HomR(F e∗R,R) as a F e∗R-module.

Proof. First note that Hom(F e∗R,R) ∼= Hom(F e∗R,ωR) is a canonical module for F e∗R. (This is okay, as F e∗R
is a finitely-generated R-module; i.e., R is F -finite, as we have been tacitly assuming throughout semester
1.) Note though that F e∗R

∼= R as a ring; i.e., F e∗ is quasi-Gorenstein. Therefore Hom(F e∗R,R) is cyclic as a
F e∗R-module. Set Φe ∈ HomR(F e∗R,R) a generator. Write T e(−) = Φe(F e∗ d · −) for some d ∈ R. Take duals
to see that F e = F e∗ d · (Φe)∨, but note that F e(1) = F e∗ 1 = F e∗ d(Φe)∨(1), which forces F e∗ d to be a unit in
F e∗R.

Example 1.10.53. Let S = k[x1, ..., xd]. Up to unit,

T e =

{
F e∗x1

pe−1 · · ·xdp
e−1 7→ 1;

other monomials 7→ 0.
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Lemma 1.10.54. A quasi-Gorenstein local ring (R,m) that is F -injective is F -split.

Proof. For a local ring (R,m), R is F -injective (i.e., Hi
m(R) ↪→ F e∗H

i
m(R)) if and only if

(Hi
m(R))∨ � F e∗ (Hi

m(R))∨.

Furthermore,

F e∗h
−i(ω•R) ∼= F e∗H

i
m(R)∨ → Hi

m(R)∨ ∼= h−i(ω•R)

is surjective for all i. For i = dimR, the trace map F e∗ωR
T e

−−→ ωR is surjective. Therefore, when R is

quasi-Gorenstein, ωR ∼= R, and hence F e∗R
T e

−−→ R is surjective. Therefore, R is F -split, as desired.

Remark 1.10.55. Let’s update the diagram in Remark 1.9.8 with our findings. In the F -finite setting,
we have:

F -regular F -rational

F -split F -injective

anti-nilpotent

Theorem 1.9.6

Remark 1.9.7

Theorem 1.8.4

Lemma 1.7.1

Proof of Theorem 1.6.3 [Ma]

+F -nilpotent, Theorem 1.8.15 [Srinivas-Takagi]+quasi-Gorenstein, Lemma 1.10.54

Remark 1.10.56. Are we able to reverse the implication F -regular implies F -rational? Recall that a local
ring (R,m) is F -rational if R is Cohen-Macaulay and HdimR

m (R) has no proper F -stable submodules. Suppose
R is any ring and M ↪→ HdimR

m (R) is an F -stable submodule. Taking duals, we get

Hom(HdimR
m (R), E) ∼= ωR →M∨ = Hom(M,E).

As M is F -stable, M∨ is “T -stable;” that is,

M HdimR
m (R)

M HdimR
m (R)

F F implies via Matlis that

ωR M∨

ωR M∨

T T

Set N = ker(ωR →M∨). We get the diagram

0 N ωR M∨ 0

0 N ωR M∨ 0

T T T

That is, T (N) ⊆ N , so ker(ωR →M∨) is honestly T -stable, as it is a submodule.
Conversely, any T -stable submodule N ⊆ ωR has a cokernel

0→ N → ωR → ωR�N → 0.

Since Matlis dual is fully faithful, ωR�N ∼= M∨ for some module M . Taking duals again, we get M ⊆
HdimR

m (R) is F -stable.
Therefore, Matlis duality induces a bijection

{N ⊆ ωR T -stable} Hom(−,E)←−−−−−→ {M ⊆ HdimR
m (R) F -stable}.
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Theorem 1.10.57. A Gorenstein F -rational domain is F -regular.

Proof. Let R be a Gorenstein F -rational domain. (Note that as F -rational rings are Cohen-Macaulay, R
must be Gorenstein, not quasi-Gorenstein.) Fix c 6= 0. Assume for the sake of contradiction that there is no

splitting for R→ F e∗R
∼= R

1
pe , 1 7→ F e∗ c = c

1
pe . Now consider the set

a =
(
ϕ
(
c

1
pe

)
| ϕ ∈ Hom

(
R

1
pe , R

)
, e ∈ N

)
,

which is the ideal in R generated by ϕ(c
1
pe ) for all ϕ. Note that the nonsplitting of R → R

1
pe , 1 7→ c

1
pe , is

equivalent to a 6= R. Also note that a is F -stable, and a 6= 0. Since R is Gorenstein, R ∼= ωR. Under this
identification, ωR has a nonzero proper T -stable submodule, which contradicts Remark 1.10.56, since R
is F -rational.

Remark 1.10.58. Once more, update the diagram in Remark 1.10.55. We have:

F -regular F -rational

F -split F -injective

anti-nilpotent

Theorem 1.9.6

Remark 1.9.7

Theorem 1.8.4

+Gorenstein, Theorem 1.10.57

Lemma 1.7.1

Proof of Theorem 1.6.3 [Ma]

+F -nilpotent, Theorem 1.8.15 [Srinivas-Takagi]+quasi-Gorenstein, Lemma 1.10.54

Example 1.10.59. In particular, if S is a polynomial ring, then S�f is Gorenstein. One can check that S�f
is F -injective or F -rational via Fedder-type statements.

Remark 1.10.60. Let’s now see another proof of Theorem 1.7.11 that uses dualizing complexes. The one
that follows is more homological, as it is element free. We will be able to use it to prove that F -rationality
deforms.

Theorem 1.10.61. Let (R,m) be Cohen-Macaulay. Let R have a dualizing “complex” ω•R. Let f ∈ m be a

regular element. If R�fR is F -injective, then R is F -injective.

Proof. Consider the diagram

0 R R R�f 0

0 F e∗R F e∗R F e∗
R�f 0

·f

fpe−1F e F e
F e

As R is Cohen-Macaulay, ω•R
∼=q ωR[dimR], where ωR is a canonical module. If we apply Hom(−, ωR), we

first get the long exact sequence

· · · → Hom
(
R�f, ωR

)
→ Hom(R,ωR)

·f−→ Hom(R,ωR)→ Ext1
(
R�f, ωR

)
→ Ext1(R,ωR)→ · · · .

Now, ωR is torsion-free, so Hom
(
R�f, ωR

)
= 0. Furthermore, we have that Hom(R,ωR) ∼= ωR, that

Ext1
(
R�f, ωR

)
∼= ωR�f

∼= ωR�fωR, and that Ext1(R,ωR) = 0. We obtain a diagram
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0 0

cokerT e D 0

0 ωR ωR ωR�f
0

0 F e∗ωR F e∗ωR F e∗ωR�fωR 0

T e
R F e

∗ f
pe−1T e

R T e
R�f

To show R is F -injective, it suffices to show that T eR is surjective. Since R�f is F -injective, T eR�f
is surjective.

We have a surjection µ : cokerT e � D which comes from the Snake Lemma. Assume for the sake of
contradiction that cokerT e 6= 0. Write cokerT e ∼= ωR�T e(F e∗ωR), and D ∼= ωR�T e(F e∗ fp

e−1ωR). There is a

natural map η : D → C so that

C
µ−→ D

η−→ C

is the multiplication by f map. Thus fC ∼= C, contradicting Lemma 1.2.9 [Nakayama’s Lemma].

Theorem 1.10.62 (Smith). F -rational deforms. That is, let (R,m) be an F -rational ring with a dualizing

complex ω•R, and let f ∈ m be a regular element. If R�f is F -rational, then R is F -rational.

Proof. First, note that R�f is Cohen-Macaulay, so R is also Cohen-Macaulay. Next, we need to show

that Hd
m(R) has no proper F -stable submodules. By Remark 1.10.56, there is a correspondence between

F -stable submodules of Hd
m(R) and T -stable submodules of ωR.

Set τ(ωR) to be “the smallest” nonzero T -stable submodule. Similarly, set τ(ωR�f
) to be the smallest

nonzero T -stable submodule. We will call τ(ωR) the test submodule of ωR and prove the following claim
later, where such a c is called the test element:

Claim. There is a regular element c ∈ R \ {0} such that∑
e

T e (F e∗ cωR) = τ (ωR) .

In fact, we can pick c simultaneously so that c is a test element for both ωR and ωR�f
.

Assume this claim, and consider the map R→ F e∗R defined by 1 7→ F e∗ c. This induces the following diagram
for every e.

0 R R R�f 0

1 1 1

F e∗ f
pe−1c F e∗ c [F e∗ c]

0 F e∗R F e∗R F e∗
R�f 0

·f

Adding together, we get by applying Hom(−, ωR) to all diagrams

0 ωR ωR ωR�f
0

0
⊕
e

F e∗ωR
⊕
e

F e∗ωR
⊕
e

F e∗ωR�f
0

α β γ
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where α is the dual of 1 7→ F e∗ c, β is the dual of 1 7→ F e∗ f
pe−1c, and γ is the dual of 1 7→ [F e∗ c].

The goal is to show that τ(ωR) = ωR, forcing a contradiction. To that end, see that imα = τ(ωR),

im γ = τ(ωR�f
), and imβ ⊆ τ(ωR). By assumption, τ(ωR�f

) = ωR�f
, since R�f is F -rational.

Set C = cokerα and D = cokerβ. By the Snake Lemma, there is a map µ : C � D. There is a natural
map η : D → C. One can deduce that C = 0 by Lemma 1.2.9 [Nakayama’s Lemma]. Roughly, ηµ is
multiplication by fc, and fc ∈ m.

Remark 1.10.63. We have also proved Theorem 1.10.62 [Smith] using a technique that doesn’t use
duality. Recall Theorem 1.8.18.

Theorem 1.10.64 (Singh). Let n,m ∈ Z with m− m
n > 2. Let

R = k[A,B,C,D, T ]�a,

where a is the 2× 2 minors of [
A2 + Tm B D

C A2 Bn −D

]
.

The ring R�tR is F -regular, but R is not F -regular. Hence, F -regular does not deform in general.

Remark 1.10.65. We have the following deformation results:
• F -regular rings do not deform in general. (Theorem 1.10.64 [Singh].)
• F -split rings do not deform in general. (Theorem 1.7.18 [Singh].)
• F -rational rings deform. (Theorem 1.10.62 [Smith].)
• F -injective rings deform, when the ring is Cohen-Macaulay+ (like, for instance, Cohen-Macaulay at

all primes other than the maximal ideal (the punctured spectrum)). (Theorem 1.7.11 [Fedder].) It
is conjectured that all F -injective rings deform.

Using the diagram in Remark 1.10.58, we see that Gorenstein F -regular rings deform.

Theorem 1.10.66 (Shimomoto-Taniguchi-Tavanfar). Let (R,m) be a local noetherian ring of dimension d.

Let f ∈ m be a regular element. If R�f is quasi-Gorenstein and the Frobenius action on Hd−1
m

(
R�f

)
is

injective, then R is quasi-Gorenstein.

Proof. Recall in Theorem 1.7.19 that proving R�f is F -injective implies R is F -split used the identification

of f as a surjective element.
Without loss of generality, assume that R is complete. The first step is to establish that f is a surjective

element; i.e.,

Hi
m

(
R�fnR

)
→ Hi

m

(
R�fR

)
is surjective for all i. By a diagram chase, this occurs if and only if Hi

m(R)
·f−→ Hi

m(R) is surjective. (The
proof of this is an exercise in direct limits and local cohomology.)

Let’s check that this is enough. Using the short exact sequence

0→ R
·f−→ R→ R�fR→ 0,

we get the long exact sequence

· · · → Hd−1
m (R)

·f−→ Hd−1
m (R)→ Hd−1

m

(
R�fR

)
→ Hd

m(R)
·f−→ Hd

m(R)→ 0.

Assuming that f is a surjective element, we get the short exact sequence

0→ Hd−1
m

(
R�fR

)
→ Hd

m(R)
·f−→ Hd

m(R)→ 0.
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Take Matlis duals to get

0→ ωR
·f−→ ωR → ωR�f

∼= ωR�fωR → 0.

Since R�fR is quasi-Gorenstein, ωR�f
∼= R�fR, so ωR is cyclic. Write ωR = R�J for some ideal J . The goal

is then to show that J = 0. What follows is a sketch.
Since R�fR is quasi-Gorenstein, R is unmixed. There is an older result by Aoyama that says ωR is

faithful; i.e., AnnωR = 0. Thus, J = 0, and therefore ωR ∼= R.
Next, we can focus on showing that f is indeed a surjective element. By assumption, the map

Hd−1
m

(
R�fR

)
→ F e∗H

d−1
m

(
R�fR

)
is injective, so it dualizes to a surjective map

F e∗ωR�f
ωR�f

F e∗
R�fR

R�fR

∼= ∼=

That is, R�fR is F -split. This forces f to be a surjective element by the proof of Theorem 1.7.19.

1.11 Frobenius Operators

Remark 1.11.1. An easy, but fundamental, observation of Lyubeznik and Smith is the following. Let
(R,m, k) be a local Gorenstein ring.

ER(k) ∼= HdimR
m (R)∨

The natural Frobenius map on HdimR
m (R) gives a natural “Frobenius operator” on ER(k); that is, an R{F}-

structure.

Definition 1.11.2 (set of Frobenius operators). Fix an R-module M . Set

Fe(M) = {ρ : M →M | ρ ∈ HomR(M,F e∗M), ρ is a pe-linear map} .

Call Fe the set of Frobenius operators of order e.

Definition 1.11.3 (ring of Frobenius operators). We can patch the set of Frobenius operators of all orders
together; we get a noncommutative graded ring

F(M) = F0(M)⊕F1(M)⊕F2(M)⊕ · · · .

That is, given a pe-linear map ρ : M →M and a pe
′
-linear map ρ′ : M →M , then both ρ ◦ ρ′ and ρ′ ◦ ρ are

pe+e
′
-linear. One calls F(M) the ring of Frobenius operators.

Theorem 1.11.4 (Lyubeznik-Smith). If (R,m, k) is a complete local Gorenstein ring with E = ER(k), then
F(E) is finitely generated over F0(E).

Remark 1.11.5. The Gorenstein assumption is necessary; if

R =
k

[
x y z
u v w

]
�I2

where I2 is the 2× 2 minors of [
x y z
u v w

]
,

then F(E) is not finitely generated over F0(E).
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Theorem 1.11.6 (Katzman-Schwede-Singh-Zhang). Let S = k[x1, ..., xd]. Let n ∈ N. Set M to be the set
of monomials of degree n in the variables xi, i ∈ {1, ..., d}. That is,

M =

x1
i1 · · ·xdid |

d∑
j=1

ij = n

 .

The ring R = ̂k[m | m ∈M] ⊆ Ŝ (which is called the n-Veronese subalgebra of S) satisfies the following.
1. If M = Rx1···xd

and N is the submodule of M generated by x1
i1 · · ·xdid with i` ≥ 1 for some `, then

ER(k) ∼= M�N .
2. Fe(E) is generated over F0(E) by 1

x1
a1 ···xd

ad
F e with ai ≤ pe − 1 and

∑
ai ≡ 0 mod n?p?.

Proof sketch. The proof relies on a delicate identification. It was known from before (in Blickle’s thesis)

that, if R = S′�a with S′ = kJz1, ..., zdK, then

Fe(E) ∼=

(
a[pe] :S′ a

)
�a[pe]

(Recall Corollary 1.4.24 [Fedder’s Criterion].)
However, one needs to understand the operation in the graded ring. Write

A =
⊕
n∈N

[A]n

where [A]n are the degree n parts of A. Thus, A is an N-graded algebra. Thus [A]≤n[A]≤m ⊆ [A]≤n+m.
Define

T (A) =
⊕
e≥0

[A]pe−1.

Therefore [T (A)]e = [A]pe−1. Give T (A) the noncommutative operation

f ∗ g = fgp
e

∈ A

for f ∈ [T (A)]e and g ∈ [T (A)]e′ . One can check that

f ∗ g ∈ [A](pe−1)+pe(pe′−1) = [A]pe+e′−1 = [T (A)]e+e′ .

The theorem follows by writing F(E) ∼= T (A) for some graded algebra A which is based on symbolic powers.
Roughly, under “nice” assumptions, ωR is isomorphic to a height 1 ideal of R. One can promote the set of
all height 1 ideals to a group, called the divisor class group. The powers in this group of ωR are the symbolic
powers ωR

(n). Here, ωR
(−n) for n ≥ 0 is HomR(ωR

(n), R). The algebra needed for the theorem is therefore

A =
⊕
n≥0

ωR
(−n),

which is called the anticanonical algebra of R.

Remark 1.11.7. The anticanonical algebra A is almost never noetherian, but it is noetherian when R is
Gorenstein, or when ωR has torsion in the class group.

Example 1.11.8. For n = 3 and d = 2, let R = kJx3, x2y, xy2, y3K ⊆ S = kJx, yK. For a fixed e, we have
the following.

1. If p ≡ 1 mod 3, then

F(E) = R

{
1

(xy)p−1
F

}
,

which is finitely generated over F0(E).
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2. If p ≡ 2 mod 3, then

F(E) = R

{
1

xp−3yp−1
F,

1

xp−2yp−2
F,

1

xp−1yp−3
F,

1

xp2−1yp2−1
F 2

}
,

which is finitely generated over F0(E).
3. If p = 3, then

F(E) = R

{
1

xy2
F,

1

x2y
F,

1

x7y8
F 2,

1

x8y7
F 2, ...,

1

x25y26
F 3,

1

x26y25
F 3, ...

}
is not finitely generated.

Definition 1.11.9 (Q-Gorenstein). Call a ring R Q-Gorenstein if ωR
(n) is principal for n > 0.

Remark 1.11.10. Theorem 1.11.6 [Katzman-Schwede-Singh-Zhang] says that under these nice con-
ditions, F(E) is finitely generated when R is Q-Gorenstein with ωR

(n) principal such that p does not divide
n.

Remark 1.11.11. Via duality, one can show that HomR(ωR
(pe−1), R) ∼= ωR

(1−pe), and identify

F(E) ∼=
⊕
e≥0

ωR
(1−pe)F e.

This justifies the strange operation on T (A) and gives it an explicit form:

(aF e) ◦ (bF e
′
) = abp

e

F e+e
′
.

1.12 FFRT Rings

Definition 1.12.1 (finite F -representation type). For a ring (R,m), we say thatR has finite F -representation
type (FFRT) if there is a finite collection N1, ..., Ns of R-modules such that F e∗R

∼= N1
⊕a1 ⊕ · · · ⊕Ns⊕as

for integers ai ∈ N. Note that Ni does not depend on e, while ai does.

Remark 1.12.2. Recall our tacit assumption that R is F -finite; i.e., F e∗R is finitely generated for all e.
Thus if R has FFRT, each Ni will also be finitely generated.

Example 1.12.3. If R is a regular ring, then by Theorem 1.1.24 [Kunz], F e∗R
∼= R⊕e dimR. Hence R

has FFRT; N1 = R and a1(e) = edimR.

Example 1.12.4. Any direct summand of a regular ring has FFRT. In particular, the nth Veronese has
FFRT for n 6≡ 0 mod p.

Example 1.12.5. Any artinian local ring (which must have finite length) has FFRT.

Example 1.12.6. Any monomial quotient of a polynomial ring has FFRT. That is, if R = S�a where
S = k[x1, ..., xd]m and a is generated by monomials, then R has FFRT.

Example 1.12.7. The ring

R =
k

[
x y z
u v w

]
�I2

where I2 is the 2× 2 minors of [
x y z
u v w

]
has FFRT.
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Remark 1.12.8. It is an open question if the ring

R =
k

x11 x12 x13

x21 x22 x23

x31 x32 x33


�det

has FFRT.

Remark 1.12.9. When R is Cohen-Macaulay, F e∗ is a Cohen-Macaulay R-module of dimension d = dimR.
Any direct summand N of F e∗R is also a Cohen-Macaulay R-module of dimension d.

Definition 1.12.10 (maximal Cohen-Macaulay module). We call a Cohen-Macaulay R-module of dimension
dimR a maximal Cohen-Macaulay module (MCM).

Definition 1.12.11 (finite Cohen-Macaulay type). A Cohen-Macaulay ring R with finitely many indecom-
posible MCMs is said to have finite Cohen-Macaulay type.

Remark 1.12.12. If R has finite Cohen-Macaulay type, then R has FFRT.

Theorem 1.12.13 (Hochster-Nuñez-Betancourt, Dao-Quy). If R has FFRT, then for each i and ideal a,
Hi

a(R) has finitely many associated primes.

Proof. Set M = Hi
a(R). Recall that p ∈ Ass(M) if and only if H0

p(Mp) 6= 0. As F e∗− commutes with
localization, it’s easy to check that Ass(M) = Ass(F e∗M). Now, it’s clear that

AssHi
a(R) ⊆

⋃
e

AssHi
a(F e∗R) ⊆

s⋃
j=1

AssHi
a(Nj).

Thus ∣∣AssHi
a(R)

∣∣ ≤ s∑
j=1

∣∣AssHi
a(Nj)

∣∣ <∞,
as desired.

Remark 1.12.14. In the same paper, Hochster and Nuñez-Betancourt also prove that

R =
k

x11 x12 x13

x21 x22 x23

x31 x32 x33


�det

satisfies the fact that each Hi
a(R) has only finitely many associated primes.

Remark 1.12.15. The first proof of the associated prime theorem was from Takagi-Takahashi, in the
quasi-Gorenstein case. They proved that

AssHi
a(ωR) ⊆

⋃
j

Ass Exti
(
Nj�aNj , ωR

)
.

Indeed, assume F e∗R
∼= N1

⊕a1 ⊕ · · · ⊕Ns⊕as . We get that

F e∗R HomR

(
R�a[pe], ω•R

)
∼= R HomF e

∗R

(
F e∗R�aF e∗R,F

e
∗ω
•
R

)
∼= R HomR

(
F e∗R�aF e∗R,ω

•
R

)
,

where the second isomorphism is a quite technical application of duality. Commuting the limit, we then get

R HomR

(
F e∗R�aF e∗R,ω

•
R

)
∼=
⊕
j

R HomR

(
Nj�aNj , ω

•
R

)
.

One can then take cohomology to get

F e∗ Exti
(
R�a[pe], ωR

)
∼=
⊕
j

F e∗ Exti
(
Nj�aNj , ωR

)⊕aj
,

and

lim
e→∞

F e∗ Exti
(
R�a[pe], ωR

)
∼= Hi

a(ωR).

Remark 1.12.16. A question: does FFRT imply F -regular?
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1.13 Test Ideals

Remark 1.13.1. Recall that in Theorem 1.10.62 [Smith], we assumed that for a local ring (R,m) with
canonical module ωR, we have the equality

τ(ωR) =
∑
e

T e(F e∗ cωR),

where T is the trace of Frobenius, τ(ωR) is the smallest nonzero T -stable submodule of ωR, and c ∈ R \ {0}
is a test element. This claim will follow from a general theory of test ideals. Roughly, to check if R is an
F -regular domain, one needs to check a priori an infinite family of conditions:

For every d ∈ R \ {0}, there exists e = e(d)� 0 such that R→ F e∗R
·F e
∗ d−−−→ F e∗R splits. (∗d)

However, we can make our lives much easier by finding a single c ∈ R \ {0} so that if (∗c) holds for all e,
then (∗d) holds for all d.

Definition 1.13.2 (compatible). For a ring R, call an ideal a compatible provided ϕ(F e∗ a) ⊆ a for all
ϕ ∈ HomR(F e∗R,R) and all e.

Remark 1.13.3. Contrast the above definition with Definition 1.4.16 [ϕ-compatible], where we fix one
ϕ ∈ HomR(F e∗R,R) and ask that ϕ(F e∗ a) ⊆ a for this one ϕ. For any fixed ϕ ∈ HomR(F e∗R,R) and a which

is a ϕ-compatible ideal, the map ϕ descends to a map ϕ ∈ HomR

(
F e∗
R�a, R�a

)
.

F e∗R R

F e∗

(
R�a

)
R�a

ϕ

ϕ

A compatible ideal is ϕ-compatible for all possible ϕ.

Remark 1.13.4. In the literature, compatible ideals a are also called “uniformly” compatible. In the case
that a is prime and compatible, a is also called “F -pure centers.”

Remark 1.13.5. There is a related class of singularities called F -pure. This is defined by asking that the
Frobenius map F : R → F e∗R is pure; i.e., that id⊗F e : M → M ⊗ F e∗R is injective. In the F -finite case
(which we have still been tacitly assuming), F -split is equivalent to F -pure.

Lemma 1.13.6. The collection of compatible ideals in a ring is closed under finite sum and intersection.
The minimal primes of a compatible ideal are compatible.

Example 1.13.7. If R is regular, then there are no proper compatible ideals. Indeed, pick any f ∈ R and
extend F e∗ f to a basis for F e∗R, which is free by Theorem 1.1.24 [Kunz]. Let ϕ ∈ HomR(F e∗R,R) be the
projection onto the F e∗ f factor. If a is compatible and f ∈ a \ {0}, then

1 = ϕ(F e∗ f) ∈ a,

so a = R.

Remark 1.13.8. The above argument works for F -regular rings too; we just don’t need a basis.

Remark 1.13.9. Historically, a source of compatible ideals that were studied were of the form a = AnnN for
N ⊆ Hi

m(R) with N an F -stable submodule. Recall Theorem 1.4.28 [Schwede]; if R is F -split (F -pure),
then there are only finitely many such ideals.

Remark 1.13.10. Compatibility is linked to splitting in the following way:
Suppose q ∈ SpecR is prime and compatible. For each f ∈ q, the map

R→ F e∗R
·F e
∗ f−−−→ F e∗R

59



cannot split. Otherwise, set ϕ : F e∗R → R the splitting and note that 1 = ϕ(F e∗ f) ∈ q. Conversely, if q is
not compatible, then for some e, the local maps

Rq → F e∗Rq
·F e
∗ f−−−→ F e∗Rq

split. That is, we could have defined q as compatible if for all f ∈ q, the map

Rq → F e∗Rq
·F e
∗ f−−−→ F e∗Rq

does not split.

Definition 1.13.11 (test ideal). Fix a local ring (R,m). Define the test ideal of (R,m) to be the unique
smallest nonzero compatible ideal, denoted τ(R).

☡ Warning! 1.13.12. There is no reason to assume that τ(R) exists! Even in the F -split case, where for
each fixed ϕ ∈ HomR(F e∗R,R) there are finitely many ϕ-compatible ideals, it is still possible that all ideals
are not uniformly compatible.

Definition 1.13.13 (test element). Elements of τ(R) are called test elements.

Example 1.13.14. By Remark 1.13.19, for any F -regular ring R, τ(R) = R.

Example 1.13.15. For R = k[x, y, z]m�(x3 + y3 + z3) and p ≡ 1 mod 3, τ(R) = m, which we will later see.

Remark 1.13.16. Suppose τ(R) exists. Let c ∈ τ(R) \ {0}. Note that the ideal

J =
∑
e≥0

∑
ϕ∈HomR(F e

∗R,R)

ϕ(F e∗ cR)

is compatible. Note also that c ∈ J (taking e = 0 and ϕ = id). In fact, J is the smallest ideal that is
compatible and contains c; thus J = τ(R). Thus, to prove that τ(R) exists, it suffices to find one single
element in τ(R) \ {0}.

Theorem 1.13.17 (Existence of test elements). If R is reduced and c ∈ R \ {0} such that Rc is F -regular
(or just regular), then c has a power which is a test element. Furthermore, if there exists ϕ ∈ HomR(F e∗R,R)
such that ϕ(F e∗ 1) = c, then c3 is a test element.

Lemma 1.13.18. Formation of the test ideal commutes with localization and completion.

Proof. Let W be a multiplicatively closed set. Assume there exists c ∈ R \ {0} such that c ∈ τ(R) and
c
1 ∈ τ(W−1R). View both τ(W−1R) and W−1τ(R) as ideals in W−1R. Note that by F -finiteness,

HomW−1R(F e∗W
−1R,W−1R) ∼= HomR(F e∗R,R)⊗RW−1R.

Thus any map ϕ ∈ HomR(F e∗R,R) satisfies

ϕ
(F e∗ c)

1
=
ϕ

1

(
F e∗

c

1

)
.

Summing over all maps, one obtains τ(W−1R) = W−1τ(R).
Completion is similar.

Theorem 1.13.19. A ring R is F -regular if and only if τ(R) = R.

Proof. As τ(R) commutes with localization by Lemma 1.13.18, it suffices to assume that R is local with
maximal ideal m. If R is F -regular, then for any c ∈ τ(R) \ {0}, there is a splitting ϕ ∈ HomR(F e∗R,R) of
the natural map

R→ F e∗R
·F e
∗ c−−−→ F e∗R
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so 1 = ϕ(F e∗ c) ∈ τ(R). Thus, τ(R) = R.
Conversely, if τ(R) = R and c ∈ R \ {0}, consider the sum∑

e

∑
ϕ

ϕ(F e∗ cR) 6= 0,

which is compatible. Thus, R = τ(R) ⊆
∑∑

ϕ(F e∗ cR). Therefore, there exists e so that ϕ(F e∗ c) 6∈ m; i.e.,

R→ F e∗R
·F e
∗ c−−−→ F e∗R

splits.

Remark 1.13.20. If a is a compatible ideal and τ(R)∩ a 6= 0, then τ(R) ⊆ a. It also makes sense to ask for
the “largest” proper compatible ideal. This is easier to construct when R is noetherian by Zorn’s lemma.

Definition 1.13.21 (Aberbach-Enescu ideals). Let (R,m, k) be a local ring with perfect residue field. For
each e, define the Aberbach-Enescu ideals

ae = {r ∈ R | ϕ(F e∗ r) ∈ m for all ϕ ∈ HomR(F e∗R,R)} .

That is, these are the elements r ∈ R for which

R→ F e∗R
·F e
∗ r−−−→ F e∗R

does not split.

Definition 1.13.22 (F -splitting prime). Define ps(R) to be

ps(R) =
⋂
e

ae =

{
r ∈ R | R→ F e∗R

·F e
∗R−−−→ F e∗R does not split for any e

}
.

One calls ps(R) the F -splitting prime.

Remark 1.13.23. Note that if R is not F -split, then 1 ∈ ps(R); i.e., ps(R) = R.

Theorem 1.13.24 (Aberbach-Enescu). If R is F -split, then ps(R) is prime.

Proof. Since R is F -split, it is reduced. We can identify F e∗R
∼= R

1
pe . Suppose that ab ∈ ps(R). Set

ϕx,e : R→ R
1
pe
·x

1
pe

−−−→ R
1
pe .

Proceed by contradiction and assume that a 6∈ ps(R) and b 6∈ ps(R). Choose e1 and e2 so that ϕa,e1 and
ϕb,e2 split. Write ψx,e for the splitting of ϕx,e. The “composition,” up to identifying isomorphism classes,
of ϕa,e1 and ϕb,e2 , will split. Let

ψ ∈ HomR

(
R

1

pe1+e2 , R
)

send (ap
e2
b)

1

pe1+e2 to 1. Ultimately, ϕape2 b,e1+e2
precomposed with ψ is a splitting. As ab ∈ ps(R), the

element ap
e2
b is also in ps(R), which is a contradiction.

Remark 1.13.25. We see that if R is F -split, ps(R) 6= R is prime. On the other hand, what happens when
ps(R) = 0?

Theorem 1.13.26. Let R be an F -split ring. The following are equivalent:
1. R is F -regular,
2. τ(R) = R, and
3. ps(R) = 0.
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Proof. Theorem 1.13.19 proves that 1 and 2 are equivalent. Note that ps(R) = 0 if and only if for each
c ∈ R \ {0}, there exists e� 0 such that

R→ F e∗R
·F e
∗ c−−−→ F e∗R

splits.

Remark 1.13.27. For each e, we can set

ime = im
(

HomR(F e∗R,R)
evFe
∗ 1−−−−→ R

)
,

and it’s easy to check that

· · · ⊆ im3 ⊆ im2 ⊆ im1 ⊆ R.

By a theorem of Hartshorne-Speiser-Lyubeznik, via Matlis dualilty, this chain stabilizes to an ideal which
we denote σ(R) = ime for any e� 0. This ideal is called the non-F -pure ideal. It’s straightforward to check
that σ(R) = R if and only if R is F -split.

Definition 1.13.28 (pair). Let R be a ring. Let M be an R-module. Let ϕ ∈ HomR(F e∗M,M). We call
the data (M,ϕ) a pair.

Example 1.13.29. Let R be regular. Let ϕ = Φ ∈ HomR(F∗R,R) be a generator as an F∗R-module. The
data (R,Φ) is a pair.

Example 1.13.30. The pair (ωR, T ) is the “dual” of (R,Φ).

Definition 1.13.31 (test ideal 2). For any pair (M,ϕ), define the smallest nonzero ϕ-compatible submodule
τ(M,ϕ). Call this, if it exists, the test submodule of (M,ϕ).

Example 1.13.32. Let R = F2[x, y]. As R is regular, τ(R) = R. However, if we set {1, x 1
2 , y

1
2 , (xy)

1
2 } a

basis for R
1
2 and define a map ϕ such that

1 7→ 0

x
1
2 7→ 1

y
1
2 7→ 0

(xy)
1
2 7→ 0,

then we claim τ(R,ϕ) = (y). Indeed, ϕ(y
1
2 ) = 0 ∈ (y) and for any f ∈ (y), there is a polynomial g so that

ϕ(f
1
2 ) = ϕ(yg

1
2 ). We can see this by expanding f

1
2 and checking which terms go to 0. Thus,

ϕ
(
f

1
2

)
= ϕ

(
yg

1
2

)
= yϕ

(
g

1
2

)
∈ (y).

Thus (y) is ϕ-compatible. It’s then a degree check to verify that τ(R,ϕ) = (y).
Additionally, we can compute the test ideals for the following pairs:
1. If ϕ = Φ is

1 7→ 0

x
1
2 7→ 0

y
1
2 7→ 0

(xy)
1
2 7→ 1,

then τ(R,ϕ) = R.
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2. If ϕ is

1 7→ 0

x
1
2 7→ 0

y
1
2 7→ 1

(xy)
1
2 7→ 0,

then τ(R,ϕ) = (x).
3. ϕ is

1 7→ 1

x
1
2 7→ 0

y
1
2 7→ 0

(xy)
1
2 7→ 0,

then τ(R,ϕ) = (xy)
1
2 ?.

Remark 1.13.33. Additionally, finding any c ∈ τ(R,ϕ) \ {0}, one has for ϕ ∈ HomR(F e∗R,R),

τ(R,ϕ) =
∑
n

ϕn(Fne∗ cR).

Lemma 1.13.34. If ϕ ∈ HomR(F e∗R,R) and m ≥ 1, then τ(R,ϕ) = τ(R,ϕm). Moreover, τ(R,ϕm) =
τ(R,ϕn) for all m,n ≥ 1.

Proof. It’s clear that the second claim follows from the first, so we only show the first. It’s also clear that
τ(R,ϕm) ⊆ τ(R,ϕ), since τ(R,ϕ) is ϕm-compatible. Conversely, pick c a test element for τ(R,ϕm) and
write

τ(R,ϕ) =
∑
n

ϕn(Fne∗ cR) ⊆
∑
n

(ϕm)n(Fnme∗ cR) = τ(R,ϕm).

Remark 1.13.35. We will see in semester two a geometric interpretation of pairs. In particular, set
X = SpecR. A “fancy” adjunction will associate to ϕ a subscheme ∆ϕ ⊆ X.

X∆ϕ

The ideal τ(R,ϕ) will characterize the singularities of ∆ϕ as embedded in X.

Remark 1.13.36. Provisionally, one can define (R,ϕ) to be F -split if ϕ is a splitting of F e and F -regular
if τ(R,ϕ) = R. It is elementary to check that for a domain R, (R,ϕ) is F -regular if and only if for all
c ∈ R \ {0}, there exists n� 0 such that

R→ Fne∗ R
·Fne
∗−−−→ R

splits via the map ϕn : Fne∗ R→ R.
We will eventually see a greater generalization of pairs.
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Remark 1.13.37. For Gorenstein rings, there is an obvious, nearly canonical, pair. Recall that R
F e

−−→ F e∗R

dualizes to the trace map F e∗ωR
T e

−−→ ωR. After identifying ωR ∼= R (which is not done canonically), we
obtain

F e∗ωR ωR

F e∗R R

∼=

T e

∼=

Φe

Later, we will check that Φe generates HomR(F e∗R,R) as an F e∗R-module. (This is a consequence of adjunc-
tion.)

Theorem 1.13.38. If R is a Gorenstein ring, then τ(R) = τ(R,Φe).

Proof. It’s clear that τ(R,Φe) ⊆ τ(R), as τ(R) is Φe-compatible.
Fix d, and write ϕ ∈ HomR(F d∗R,R) as ϕ(−) = Φd(F d∗ c · −) for some c ∈ R by the generation claim in

Remark 1.13.37 above. We have

ϕ(F d∗ τ(R,Φe)) = Φd(F d∗ cτ(R,Φe)) = Φd(F d∗ cτ(R,Φd)),

by Lemma 1.13.34. Next,

Φd(F d∗ cτ(R,Φd)) ⊆ Φd(F d∗ τ(R,Φd)) ⊆ τ(R,Φd),

by compatibility. Finally,

τ(R,Φd) = τ(R,Φe)

by Lemma 1.13.34. Hence τ(R,Φe) is ϕ-compatible for any ϕ.

Remark 1.13.39. Our next goal is to show that test ideals, in particular, τ(ωR, T ), exist, for ωR a canonical
module and T : F∗ωR → ωR the dual of Frobenius. Recall that

τ(ωR, T ) =
∑
e≥1

T e(F e∗ cωR)

for c ∈ R \ {0}.

Remark 1.13.40. For any domain, ωR is finitely generated, torsion-free, and rank 1. That is,

rankωR = dimK(ωR ⊗R K)

for K = FracR.

Theorem 1.13.41. Let R be a domain. Let M be a noetherian, finitely generated, torsion-free, rank 1
R-module. Let ϕ 6= 0 so that (M,ϕ) is a pair. The test ideal τ(M,ϕ) exists.

Proof. As M has rank 1, it is possible to find c 6= 0 such that Mc = M ⊗R Rc ∼= Rc, and for any fixed e,
1. F e∗Mc

∼= F e∗Rc,
2. cM ⊆ ϕ(F e∗M), and
3. the map ϕc : F e∗Mc →Mc generates HomRc

(F e∗Mc,Mc) as an F e∗Rc-module.
Note: finding such a c in practice is fairly easy. To see how these can be satisfied, note that ϕ is “generically
surjective” (i.e., ϕc is surjective for all c ∈ R \ V (a) for some ideal a), and HomR(F e∗M,M) also has rank 1.

For example, set K = FracR. As M has rank 1, M ⊗R K ∼= K. After clearing denominators, any
π ⊗ 1 has cπ = 0 whenever π ∈M is torsion. That is, if c ∈ Annπ, then

π ⊗ 1 = π ⊗ c

c
= cπ ⊗ 1

c
= 0⊗ 1

c
= 0.

As M is finitely generated and noetherian, the torsion submodule of M is finitely generated, so
working over all generators of the torsion submodule, we can find a single c such that cπ = 0 for all
torsion π. Thus, in Mc, π = 0, so Mc

∼= Rc, and thus F e∗Mc
∼= F e∗Rc. So property 1 is believable.
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Next, we make the following claim:

Claim. For any N ⊆M that is ϕ-compatible, Nc ∼= Mc
∼= Rc.

Proof. To establish the claim, it suffices to prove that Mq
∼= Nq

∼= Rq for all q ∈ SpecRc. Pick
n ∈ Nq \{0} and `� 0 such that F `e∗ n 6∈ qF `e∗ Mq. Otherwise, F `e∗ Nq ⊆ qF `e∗ Mq implies Nq

∼= Mq,
and we are done.

Now, F `e∗ n 6∈ qF `e∗ Mq
∼= F `e∗

(
q[p`e]Rq

)
, This is because Mc

∼= Rc, which implies Mq
∼= Rq for all

q ∈ SpecRc.

Also, F `e∗ Mq is a free Rq-module, so F `e∗

(
Mq�

q[p`e]

)
is a free Rq�q-module of the same rank.

Choose a1 = n and a2, ..., as as a basis for F `e∗

(
Mq�

q[p`e]

)
as an Rq�q-module. This produces a

map

γ :
⊕
i

aiR→ F `e∗ Mq

which is surjective by Lemma 1.2.9 [Nakayama’s Lemma]. By rank consideration, γ is bijective.
(That is, a surjective map of free modules of the same rank is bijective.) Projection onto the first
coordinate defines a map ψ : F `e∗ Mq → Mq such that ψ(F `e∗ nRq) = Mq. By property 3, we can
write ψ as ϕ`(F `e∗ d · −), and therefore

Mq = ψ(F `e∗ nRq) ⊆ ψ(F `e∗ Nq) = ϕ`(F `e∗ dNq) ⊆ ϕ`(F `e∗ Nq) ⊆ Nq ⊆Mq,

Therefore, Mq
∼= Nq, as claimed.

Let’s see how this claim proves the theorem. Since Nc ∼= Mc, c
nM ⊆ N , as M is finitely generated. In

particular, for m ∈M ,

m

1
=

η

cn

for some η ∈ N and n ∈W, so cnm = η ∈ N . Working over a finite generating set, we can pick n. (In fact
n = 2 works!) Set t� 0 so that pet ≥ n+ 1. We have

c2M ⊆ ccM ⊆ cϕt(F te∗ M) = ϕt(F te∗ c
pteM) ⊆ ϕt(F te∗ cnM) ⊆ ϕt(F te∗ N) ⊆ N,

by property 2, the fact that pet ≥ n+ 1, and the fact that N is ϕ-compatible.
Finally, ∑

t

ϕt(F te∗ c
2M) ⊆ N,

but the left side is ϕ-compatible. As N is arbitrary,

τ(M,ϕ) =
∑
t

ϕt(F te∗ c
2M),

as desired.

Corollary 1.13.42. If R is Gorenstein, then τ(R) = τ(ωR,Φ) exists.
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1.13.1 Tight Closure

Remark 1.13.43. We have not shown that τ(R) exists in full generality. The existence of τ(R)
depends on tight closure.

Remark 1.13.44. Tight closure will be able to give us the following applications:

1. Remark 1.8.44: A consequence of the Briano̧n-Skoda Theorem is that for a local ring
(R,m, k) of dimension d with k infinite and R F -rational, if J is an ideal such that mn = Jmn−1

(we say J is a reduction of m), then md ⊆ J . Recall that we used this to show Theorem
1.8.41 [Huneke-Watanabe], which said

e(R) = lim
n→∞

d!λ
(
R�mn

)
nd

≤
(
ν − 1

d− 1

)
,

where ν is the embedding dimension of R.
2. Theorem 1.4.50 [Ein-Lazarsfeld-Smith, Hochster-Huneke, Ma-Schwede]: If R is a

regular ring, a ⊆ R is an ideal with bight a = h, then a(hn) ⊆ an for all n.
3. Let R be a domain of finite type over k. Let a = (f1, ..., fh) be a complete intersection in R;

i.e., ht a = h. There exists an ideal J such that JHi
a(R) = 0 for all i < h. J is the Jacobian.

Explicitly, if R = k[x1, ..., xd]�(g1, ..., gt)
, then

J = JacR = Ir

[
∂gi
∂xj

]
,

that is, the r × r minors of the matrix of partial derivatives, where r = d− dimR.
4. Tight closure will give meaning to 0∗Hd

m(R).

5. Tight closure will give new proofs of

F -regular F -rational

F -split F -injective

6. Tight closure will relate to questions about splinters.

Definition 1.13.45 (integral element). For a ring extension R ⊆ S, an element t ∈ S is integral
over R provided that t is the root of a monic polymonial f ∈ R[x].

Definition 1.13.46 (integral extension). An extension R ⊆ S is integral if every element in S is
integral over R.

Example 1.13.47. Let K ⊆ L be a field extension. The algebraic elements of L over K are
integral over K.

Example 1.13.48. The extension Z ⊆ Z[
√
d] where d is a positive integer is an integral extension,

since
√
d is the root of x2 − d ∈ Z[x].

Example 1.13.49. The element 1+
√

5
2 ∈ Q[

√
5] is integral over Z[

√
5] using T 2 − T − 1.

Example 1.13.50. Let R = k[y] and S = k[y, t]�(t2 − y). The element t ∈ S is integral over R

via x2 − y. Using toric rings, this extension is equivalent to k[t2] ⊆ k[t].

Example 1.13.51. Let R = k[x] and S = k[x, y]�(x2 + y3). The element y ∈ S is integral over R

via X3 + x2. This extension is equivalent to k[t3] ⊆ k[t2, t3].

Remark 1.13.52. Recall Example 1.4.12. Let G be a group. An action of G on the ring we
denote R = k[x1, ..., xn] is an embedding G → Autk(R), where Autk(R) is the set of k-linear
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automorphisms of R. This defines a subring RG = {f ∈ R | gf = f for all g ∈ G} ⊆ R. If |G| <∞
and gcd(|G|, char k) = 1, then the Reynolds operator ρ : R→ RG sending

ρ(f) =
1

|G|
∑
g∈G

gf

is a splitting of RG ↪→ R; i.e., R ∼= RG ⊕ L.

Lemma 1.13.53. Let R be a direct summand of S.

1. For any ideal a ⊆ R, aS ∩R = a.
2. If S is noetherian, then so is R.

Proof.

1. The inclusion a ⊆ aS∩R is clear. To see aS∩R ⊆ a, choose x ∈ aS∩R and write x =
∑
aisi.

Now note that ρ(x) =
∑
aiρ(si) by linearity, where ρ : S → R is the splitting map. Send the

image back along the inverse of the splitting to see x ∈ a.
2. Obvious.

Theorem 1.13.54 (Hochster). Let R ⊆ S be a module finite extension with R a reduced excellent
ring. R is a direct summand of S if and only if aS ∩R = a for all a ⊆ R.

Remark 1.13.55. There is a connection with RG to Hilbert’s fourteenth problem. If we have
RG ↪→ R = k[x1, ..., xn] and RG is noetherian, when the action is degree preserving, then RG is a
finitely generated k-algebra.

Theorem 1.13.56. Let A ⊆ B ⊆ C be ring extensions. If A is noetherian, C is a finitely
generated A-algebra, and C is a finitely generated B-module, then B, as an A-algebra, is also
finitely generated.

Theorem 1.13.57. Let R ⊆ S be a ring extension. The following are equivalent:

1. S is a finitely generated R-module, and
2. S is a finitely generated R-algebra and S is integral over R.

Corollary 1.13.58. Let R ⊆ S be an extension of rings. The set of elements of S which are
integral over R forms a subring of S.

Proof. It suffices to show that any sum or product of integral elements is integral. (Note that
strictly from the definition, the product is okay, but the sum would be hard.) Let s1, s2 ∈ S be
integral over R. Note that s2 is integral over R[s1], and consider the diagram

R[s1, s2]

R[s1]

R

integral, module finite

integral, module finite

Therefore, R ⊆ R[s1, s2] is a module finite extension. By Theorem 1.13.57, R[s1, s2] is integral
over R, as we wished to show.

Theorem 1.13.59 (Noether). Let G be a finite group acting in a degree preserving manner on
R = k[x1, ..., xn]. The ring of invariants RG is a finitely generated k-algebra.
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Proof. We will apply Theorem 1.13.56 to the extensions k ⊆ RG ⊆ R. To check its hypotheses,
see first that k is a field, hence noetherian. See second that R is a finitely generated k-algebra.
To see third that R is a finitely generated RG-module, we use Theorem 1.13.57. First, R is a
finitely generated RG-algebra. We just need to show that RG → R is integral. It suffices to show
xi ∈ R is integral over RG for i ∈ {1, ..., n}. Note that xi is a root of the polynomial∏

g∈G
(T − gxi).

The coefficients of this polynomial are in RG. The result follows.

Definition 1.13.60 (total ring of fractions). Given any ring R, we can construct

K(R) =
{a
b
| a, b ∈ R, b is not a zero divisor

}
,

the total ring of fractions of R.

Remark 1.13.61. When R is a domain, K(R) = FracR is a field.

Example 1.13.62. K(Z) = Q.

Example 1.13.63. K(k[x1, ..., xn]) = k(x1, ..., xn).

Definition 1.13.64 (normalization). The normalization of R is the ring

RN = {z ∈ K(R) | z is integral over R}.

Definition 1.13.65 (normal). R is normal if R = RN .

Remark 1.13.66. One can show that (W−1R)N ∼= W−1(RN ) for any W a multiplicatively closed
set. In particular, if R is normal, then Rp is normal for all p ∈ SpecR.

Remark 1.13.67. Recall that a ring R is reduced if 0 is the only nilpotent element in R. That
is, if xn = 0, then x = 0.

Example 1.13.68. If R = k[x1, ..., xd]�a where a is a squarefree monomial ideal, then R is reduced.
Recall that an ideal like a = (xy, xzw) is squarefree, while a = (x2y, xzw) is not.

Lemma 1.13.69. If (R,m) is a local ring that is reduced and normal, then R is a domain.

Proof. Let {q1, ..., qr} be the minimal primes of R. One can check that if R is reduced, then
(0) = q1 ∩ · · · ∩ qr. Hence,

R ↪→
r∏
i=1

R�qi

a 7→ (a, ..., a).

One can check that

K(R) =

r∏
i=1

K
(
R�qi

)
.

Note that
∏R�qi is a finitely generated R-module, so its elements are integral over R by Theorem

1.13.57. Thus
∏R�qi ⊆ K(R). Since R is normal,

R =

r∏
i=1

R�qi.

Since R is local, r = 1.
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Definition 1.13.70 (Serre’s condition (Rk)). We say that R has (Serre’s condition) (Rk) if
Rp is a regular local ring for all p ∈ SpecR of height at most k. (In other words, R is regular in
codimension k.)

Definition 1.13.71 (Serre’s condition (Sk)). We say that R has (Serre’s condition) (Sk) if
depthRp ≥ min{k, dimRp}. (In other words, R is Cohen-Macaulay in codimension k.)

Remark 1.13.72. Serre’s conditions are useful because they are purely homological conditions. It
is therefore valuable to show that nonhomological conditions are equivalent to Serre’s conditions.

Example 1.13.73. R is regular if and only if R has (Rk) for all k.

Example 1.13.74. If X = SpecR is a surface, then R has (R1) if and only if X has only isolated
singularities.

Example 1.13.75. Let R = k[x, y, z, w]�(xz, xw, yz, yw). The ring R has (R1) but not (R2). Since

(xz, xw, yz, yw) = (x, y) ∩ (z, w), we are unioning two planes in A4
k, which is only nonsingular in

the origin.

Lemma 1.13.76. If R is a UFD, then R is a normal domain.

Proof. Let z ∈ K(R) be integral over R. Write z = a
b with gcd(a, b) a unit in R. Since z is integral,

there exists n ∈ N and a0, ..., an−1 ∈ R such that(a
b

)n
+ an−1

(a
b

)n−1

+ · · ·+ a0 = 0.

Since R is a domain, multiply by bn to get

an + ban−1a
n−1 + · · ·+ bna0 = 0.

Thus an ∈ (b). However, since gcd(a, b) = u, gcd(an, b) = u′, and since b divides an, gcd(an, b) = b.
Thus, b is a unit. Therefore z = a

b = ab−1 ∈ R.

Remark 1.13.77. Under mild conditions, an R-module M has (S2) if and only if M is reflexive;
i.e.,

M ∼= M∨∨ = HomR(HomR(M,R), R).

Theorem 1.13.78. A ring R is normal if and only if R has (R1) and (S2).

Proof. We show only that if R is normal, then R is (R1). Let R be normal. To show R is (R1), we
need to show that 1-dimensional normal local rings are regular, since dimRq = ht q. It’s enough
to show that m is principal. Take x ∈ m\m2, assume for the sake of contradiction that there exists
y ∈ m \ (x). Let m−1 = R :K(R) m = {z ∈ K(R) | zm ⊆ R}.
We claim that mm−1 = R. Note that m ⊆ mm−1, because for all a ∈ m, a = a · 1. Note also
that mm−1 ⊆ R. By maximality, we show that mm−1 6= m. By contradiction, if m = mm−1, then
ym ⊆ (x). Since y 6∈ (x), y

x 6∈ R. However, y
x ∈ m−1, so y

xm ⊆ m−1m = m. By the determinental
trick, there exists a monic equation for y

x with coefficients in R. Since R is normal, y
x ∈ R, a

contradiction.

Example 1.13.79. The ring R = k[x, y, z, w]�(xz, xw, yz, yw) is not normal, since it does not

have (S2); p dimR = 3, so depthR = 1 by Theorem 1.5.20 [Auslander-Buchsbaum]. Yet
dimR = 2, so R does not have (S2).

Remark 1.13.80. Recall that R is unmixed if ht p = 0 for all p ∈ Ass(R). One can show that R
is unmixed if and only if R has (S1). Furthermore, one can show that R is reduced if and only if
R has (R0) and (S1).
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Remark 1.13.81. Returning to F -singularities, what is the connection between integral extensions
and closures, normality, and Frobenius splittings/singularities?

Remark 1.13.82. For a ring R, there is a natural map R ↪→ RN which extends to a short exact
sequence

0→ R→ RN → RN�R→ 0.

R is normal if and only if R
N
�R = 0. Consider the ideal

c = Ann

(
RN�R

)
= {r ∈ R | rRN ⊆ R},

which we call the conductor ideal. It’s easy to see that c is an ideal of both R and RN . In fact,
c is the largest simultaneous ideal of RN and R; for any ideal a ⊆ RN which is also an ideal of R
such that aRN ⊆ R, one has a ⊆ c.

Theorem 1.13.83. If R is an F -regular ring, then R is normal.

Proof. Let c be the conductor. We claim that c is ϕ-compatible for ϕ-compatible for all maps

ϕ ∈ Hom(F e∗R,R). That is, τ(R) ⊆ c, but since R is F -regular, c ⊆ R = τ(R) ⊆ c, so R
N
�R = 0.

Set K(R) to be the total ring of quotients. For any ϕ : F e∗R→ R, we may tensor by K(R) to get
ψ : F e∗K(R)→ K(R). Identify ϕ with ψ|R. For any x ∈ c and r ∈ RN , we have

ϕ(F e∗x)r = ψ(F e∗ r
pex)

with rp
e ∈ RN . Since x ∈ c, rp

e

x ∈ R, and thus

ϕ(F e∗x)r = ψ(F e∗ r
pex) ∈ R.

Since r ∈ RN was arbitrary, we see ϕ(F e∗x)r ∈ R, so ϕ(F e∗x) ∈ c. That is, c is ϕ-compatible.

Definition 1.13.84 (complement of minimal primes). Set, for any ring R, the set R◦, which is
the complement of the minimal primes of R. That is,

R◦ = R \
⋃

p a minimal prime

p.

Remark 1.13.85. If R is a domain, then R◦ = R \ {0}.

Remark 1.13.86. We could have defined F -regular for non-domains. For example, a ring R is
F -regular if for any c ∈ R◦, the map R→ F e∗R given by 1 7→ F e∗ c splits for e� 0. Using the same
proof as Theorem 1.13.83 above, one can show that if R is a reduced F -regular ring, then R is
normal, hence a domain by Lemma 1.13.69.

Example 1.13.87. It’s easy to see examples of F -split rings that are not normal. The ring

R = k[x, y]�(xy) is F -split using Corollary 1.4.24 [Fedder’s Criterion], but not regular/does

not have (R1), so by Theorem 1.13.78, R is not normal.

Definition 1.13.88 (seminormal). For an integral extension of reduced rings R ⊆ S, call R
seminormal in S provided for each pair of relatively prime integers c and d, if b ∈ S and
bc, bd ∈ R, then b ∈ R. We call a reduced ring R seminormal if it is seminormal in R ↪→ RN .

Definition 1.13.89 (weakly normal). For an integral extension of reduced rings R ⊆ S each of
characteristic p > 0, call R weakly normal in S if for all b ∈ S, bp ∈ R implies b ∈ R. We call a
reduced ring R weakly normal if it is weakly normal in R ↪→ RN .
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Remark 1.13.90. In general, if R is normal, then it is weakly normal. If R is weakly normal,
then it is seminormal.

Example 1.13.91. The ring R = k[x, y]�(xy) is weakly normal, hence seminormal.

Example 1.13.92. The ring R = k[x, y]�(xy(x− y)) is not seminormal.

Example 1.13.93. The ring R = k[x, y, z]�(x2y − z2) is seminormal. R is weakly normal if p 6= 2.

Note that
(
z
x

)2
= y2 ∈ R, but z

x 6∈ R.

Theorem 1.13.94. If R is an F -split ring, then R is weakly normal.

Proof. As R is F -split, let ϕ : F∗R→ R be the splitting. Let r ∈ RN be such that rp ∈ R. Apply
ϕ to see that r = rϕ(F∗1) = ϕ(F∗r

p) ∈ R.

Definition 1.13.95 (integral closure). Given an ideal a ⊆ R, we define the integral closure of
a to be the ideal

a = {r ∈ R | r is integral over a}
= {r ∈ R | there exists c 6= 0 such that czk ∈ a for all k � 0}.

Remark 1.13.96. The integral closure a of an ideal a is a closure; that is, it satisfies the following:

1. a ⊆ a,
2. a = a, and
3. if a ⊆ b, then a ⊆ b.

We know of other important closures in algebra. Given an ideal a,
√
a is a closure. For a fixed

m ∈ SpecR,

asat = (a : m∞) =
⋃
n

(a : mn) = {r ∈ R | mnr ∈ a for some power n}

is a closure. (Note that definitionally, H0
m

(
R�a

)
= asat�a.)

Remark 1.13.97. Working in characteristic p > 0, we have Frobenius powers q = pe with a[q] ( aq,
so we can define the following analog of integral closure. Note that q will subsequently refer to a
power of p; i.e., q = pe, unless otherwise mentioned.

Definition 1.13.98 (tight closure). Let R be any ring of characteristic p > 0. For any ideal
a ⊆ R, set

a∗ = {z ∈ R | there exists c ∈ R◦ such that czq ∈ a[q] for all q � 0}.

Call a∗ the tight closure of a. One can easily check that a∗ is an ideal.

Remark 1.13.99. The element c can depend on a and z, but c does not depend on q.

Remark 1.13.100. The motivation for tight closure comes from the following. Let R be a reduced
ring. Let z ∈ a∗ for some ideal a. Write a = (f1, ..., fs), so that a[q] = (f1

q, ..., fs
q). We may then

write

czq =
∑
i

gifi
q.

Viewing in R ⊆ R
1
q , we have

c
1
q z =

∑
i

gi
1
q fi.

Roughly, as q → ∞, c
1
q z and gi

1
q approach 1. (The precise justification for this uses valuations.)

Thus, z is “almost” in a.
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Lemma 1.13.101. The operation a 7→ a∗ is a closure operator; i.e.,

1. a ⊆ a∗

2. a∗∗ = a∗, and
3. if a ⊆ b, then a∗ ⊆ b∗.

Proof.

1. It’s easy to verify a[q] ⊆ a ⊆ a∗ ⊆ a.
2. Assume R is noetherian, so that ideals are finitely generated. First, if a∗ = (f1, ..., fs), then

pick ci such that cifi
q ∈ a[q] for q � 0 and all i. Set c = c1 · · · cs. Notice that cfi

q ∈ a[q] for
all q � 0 and all i. That is, c(a∗)[q] ⊆ a[q].
Now, if z ∈ a∗∗, pick c′ such that c′zq ∈ (a∗)[q] for q � 0. Multiply by c to see that
cc′zq ∈ c(a∗)[q] ⊆ a[q] for q � 0. Therefore, z ∈ a∗, as desired.

3. It’s easy to verify if a ⊆ b, then a∗ ⊆ b∗.

Example 1.13.102. Let R = k[x2, x3] ⊆ k[x]. Note that x3 6∈ (x2) in R. We claim that x3 ∈ (x2)∗.
Indeed, see that

x3q = xq(x2q) ∈ (x2)[q]

for q � 0. That is, here c = 1.

Example 1.13.103. Let R = k[x, y, z]�(x3 + y3 − z3) for p 6= 3. We claim that (x, y)∗ = (x, y, z2).

We will just show that z2 ∈ (x, y)∗. Write p ≡ r mod 3. We have

(z2)q = z2q = z2q−rzr = (z3)
2q−r

3 zr = (x3 + y3)
2q−r

3 zr = zr ·
∑( 2q−r

3

i

)
x3iy3( 2q−r

3 −i).

One can check that each xmyn has m ≥ q or n ≥ q, unless r = 1 and m = n = q − 1. That is,
(z2)q 6∈ (xq, yq). However, if we set c = x (or y), then c(z2)q ∈ (xq, yq); i.e., z2 ∈ (x, y)∗.

Definition 1.13.104 (weakly F -regular). Call a ring R weakly F -regular if a∗ = a for all a ⊆ R.

Remark 1.13.105. It is not known that if R is a weakly F -regular ring, then for all multiplicatively
closed sets W ⊆ R, W−1R is weakly F -regular.

Definition 1.13.106 (F -regular). A ring R for which W−1R is weakly F -regular for all multi-
plicatively closed subsets W ⊆ R is called F -regular.

Remark 1.13.107. Recall that all prior mentions of F -regular rings were referring to strongly
F -regular rings. Recall Definition 1.9.2 [stongly F -regular]. For each c ∈ R◦, there exists
e � 0 such that there is a ϕ ∈ HomR(F e∗R,R) with ϕ(F e∗ c) = 1. Recall also that Theorem
1.13.19 characterizes strongly F -regular rings as those for which τ(R) = R.

Remark 1.13.108. In general, if R is a strongly F -regular ring, then R is F -regular. If R is an
F -regular ring, then R is weakly F -regular. There is a conjecture [weak = strong] that if R is a
weakly F -regular ring, then R is strongly F -regular. It is still open, but it is known to be true
for N-graded rings, Gorenstein rings, rings of invariants of “nice” groups, determinental rings, and
others.

Lemma 1.13.109. If R is strongly F -regular, then R is F -regular.

Proof. Note that both conditions are local, so it suffices to assume that R is a local domain. Fix
a ⊆ R. Suppose that z ∈ a∗; i.e., there exists c 6= 0 such that czq ∈ a[q]. Write a = (f1, ..., fs);

then we have a[q] = (f1
q, ..., fs

q). Pick q � 0 with ϕ : R
1
q → R that sends c

1
q to 1. Thus

czq =
∑

gifi
q,
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so

c
1
q z =

∑
gi

1
q fi.

Applying ϕ, we see that

z = ϕ
(
c

1
q z
)

= ϕ
(∑

gi
1
q fi

)
=
∑

ϕ
(
gi

1
q

)
fi ∈ a.

Remark 1.13.110. Recalling Example 1.9.4, we know that regular rings are strongly F -regular.
We thus have the implications regular implies strongly F -regular implies weakly F -regular. (Hence,
weakly F -regular is a singularity type.) However, historically, the notion of weakly F -regular came
first, so let’s see a classic proof of the following:

Theorem 1.13.111 (Hochster-Huneke). A regular ring is weakly F -regular.

Proof. Let R be regular. By Theorem 1.1.24 [Kunz], the Frobenius is flat, so for any z, any a,
and q � 0, (

a[q] : zq
)

= (a : z)
[q]
.

(Indeed, to check this, take the short exact sequence

0→ R�(a : z)
·z−→ R�a→ R�(a + zR)→ 0

and tensor by F e∗R.)

If z ∈ a∗, then czq ∈ a[q], so c ∈ (a[q] : Zq) = (a : z)[q], and c 6= 0. This forces

c ∈
⋂
n∈N

(a : z)n

by the cofinality of ordinary powers and Frobenius powers. Since c 6= 0, this means (a : z) = R;
i.e., z ∈ a.

Theorem 1.13.112 (Hochster-Huneke). If R is any ring and a = (f1, ..., fn) ⊆ R is an ideal,
then an ⊆ a∗.

Proof. Suppose z ∈ an; i.e., there exists c 6= 0 such that czm ∈ (an)m. Apply this with m = pe = q
to see that czq ∈ anq ⊆ a[q], so z ∈ a∗.

Corollary 1.13.113 (Briano̧n-Skoda). If R is weakly F -regular and a = (f1, ..., fn), then an ⊆ a.

Remark 1.13.114. Using reduction mod p, one can use this to prove the same conclusion when
R is a regular ring and C ⊆ R.

Remark 1.13.115. Recall Theorem 1.4.50 [Ein-Lazarsfeld-Smith, Hochster-Huneke, Ma-
Schwede]: If R is a regular ring and a is a radical ideal with bight a = h, then for all n, a(hn) ⊆ an.

Proof of Theorem 1.4.50 [Ein-Lazarsfeld-Smith, Hochster-Huneke, Ma-Schwede]. Let

z ∈ a(hn)

and write q = an + r with 0 ≤ r ≤ n − 1 for some a via the division algorithm. Therefore,
za ∈ a(han). Also,

ahnza ⊆ ahnza ⊆ a(han+hr) = a(h(an+r)) = a(hq) ⊆ a[q],

where a(hq) ⊆ a[q] by Theorem 1.4.53 [Hochster-Huneke]. Now, take nth ordinary powers to
see that

ahn
2

zan ⊆
(
a[q]
)n

= (an)
[q]
.

As q ≥ an, any c ∈ ahn
2

satisfies czq ∈ (an)[q]. Therefore, z ∈ (an)∗ = an, as desired.
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Remark 1.13.116. Our next goal is to use tight closure to study τ(R). Note that to establish
z ∈ a∗, we need to find a c such that czq ∈ a[q], but note that c could depend on a. We might hope
for a universal c that works for all a. That is, a c such that

c ∈
⋂
a⊆R

(a : a∗) .

There is a priori no reason to except such a c to exist. However, in Theorem 1.13.41, we showed
that for any domain R, there are elements c ∈ R \ {0} such that Rc is regular and c ∈ τ(R,ϕ) for
fixed ϕ ∈ HomR(F e∗R,R). From this, one can show a critical observation:

For any d 6= 0, there exists a map ϕ so that ϕ(F e∗ d) = c.

Accepting this, we can see that ⋂
a⊆R

(a : a∗) 6= ∅,

since for any z ∈ a∗, dzq
′ ∈ a[q′] for q′ � 0 (note d depends on a), and we can then pick q = pe

and ϕ : F e∗R→ R such that ϕ(F e∗ d) = c. Notice then that

czq
′

= ϕ
(
F e∗ dz

qq′
)
∈ ϕ

(
F e∗ a

[qq′]
)
⊆ a[q′],

where c does not depend on a!

Remark 1.13.117. We will use this to expand our setting to tight closure of modules. To do so,
we need a module replacement for a[q]. Consider the map

γe : M ∼= M ⊗R R
id⊗F e

−−−−→M ⊗R F e∗R.

Definition 1.13.118 (Frobenius power of a module). Denote for z ∈ M , zq = γe(z) for q = pe.
For N ⊆M , denote N [q] for γe(N).

☡ Warning! 1.13.119. Observe that N [q] ⊆M ⊗R F e∗R; that is, N [q] depends on how N ⊆M .

Definition 1.13.120 (tight closure of a module). For a fixed inclusion N ⊆M , set

N∗M =
{
z ∈M | there exists c ∈ R◦ such that czq ∈ N [q]

}
.

Lemma 1.13.121. For N ⊆M , z ∈ N∗M if and only if z ∈ 0∗M�N
.

Proof. Note that z ∈ N∗M if and only if there exists c 6= 0 such that z⊗c ∈ im(N⊗F e∗R→M⊗F e∗R).
Use the short exact sequence

0→ N →M →M�N → 0

and the fact that −⊗R F e∗R is right exact. That is,

N ⊗R F e∗R→M ⊗R F e∗R→M�N ⊗R F
e
∗R→ 0

is exact.

Remark 1.13.122. Recall while discussing F -rational singularities, in Definition 1.8.21, we
defined the notation 0∗Hd

m(R), which was no accident! Our previous definition will agree with tight

closure.

Definition 1.13.123 ((finitistic) test element). For c ∈ R◦, call c a (finitistic) test element if
for any inclusion N ⊆M of finitely generated modules, z ∈ N∗M if and only if czq ∈ N [q] for q � 0.
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Definition 1.13.124 (big test element). For c ∈ R◦, call c a big test element if for any inclusion
N ⊆M of modules, z ∈ N∗M if and only if czq ∈ N [q] for q � 0.

Definition 1.13.125 (finitistic test ideal). Define τfg(R) to be the ideal generated by all finitistic
test elements. That is,

τfg(R) =
⋂

N⊆M
finitely generated

(N : N∗M )

Definition 1.13.126 (big test ideal). Define τb(R) to be the ideal generated by all big test
elements. That is,

τfg(R) =
⋂

N⊆M

(N : N∗M )

Remark 1.13.127. It’s obvious that τb(R) ⊆ τfg(R). Also, τfg(R) = R if and only if R is weakly
F -regular. Therefore, note that

strongly F -regular τ(R) = R

weakly F -regular τfg(R) = R

It is conjectured that τfg(R) = τb(R). This is called the big = small conjecture, and is equivalent
to the weak = strong conjecture.

Theorem 1.13.128. Big test elements exist.

Proof. Note that z ∈ N∗M if and only if there exists c ∈ R◦ such that czq ∈ N [q], but c could

depend on N . First, choose c such that Rc is regular. For d ∈ R◦, pick ϕ ∈ HomR(F e
′

∗ R,R) such
that ϕ(F e

′

∗ d) = c (by Remark 1.13.116). Set N ⊆ M and z ∈ N∗M ; i.e., for e � 0, there is

d ∈ R◦ such that dzp
e+e′ ∈ N [pe+e′ ]. View ϕ as a map F e+e

′

∗ R→ F e∗R. Consider the diagram

N [pe+e′ ] N [pe]

M ⊗R F e+e
′

∗ R M ⊗R F e∗R.

ϕ

ϕ

Apply ϕ to dzp
e+e′

to see that

czp
e

= ϕ
(
F e
′

∗ d
)
zp

e

= ϕ
(
dzp

e+e′
)
∈ N [pe].

Thus, c is a big test element.

Remark 1.13.129. Our goal is to show that τ(R) exists. We will do so by showing it is equivalent
to τb(R) via an intermediate test ideal, using Matlis dualilty. Henceforth for simplification, assume
that (R,m, k) is an excellent complete local domain.

Definition 1.13.130 (test ideal 3). Let (R,m, k) be an excellent complete local domain. Set
τ̃(R) = Ann 0∗E , where E = ER(k).

Theorem 1.13.131 (Lyubeznik-Smith-Takagi). τ̃(R) = τb(R).
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Proof. The inclusion τb(R) ⊆ τ̃(R) is clear, since

τb(R) ⊆ (0 : 0∗E) = Ann 0∗E = τ̃(R).

Let c ∈ Ann 0∗E = τ̃(R); for each d ∈ τb(R), if z ∈ 0∗E , i.e., dzq = 0, then cz = 0, so c(dzq) = 0.
That is, c ∈ ker(dF e−) for all e � 0, where F e : E → F e∗E is the natural Frobenius operator.
That is,

c ∈
⋂
e

ker (dF e−) .

As ker(dF e−) is a descending family of submodules in E and E is artinian, it stabilizes. One can
pick a single map ψ : E → F e∗E for which

c ∈ ker dψ =
⋂
e

ker(dF e−).

Now dψ : E → F e∗E has a Matlis dual ϕ : F e∗R → R with ϕ(F e∗ d) = c. That is, we can replicate
the proof of Theorem 1.13.128 to get c ∈ τb(R).

Remark 1.13.132. It only remains to connect τ̃(R) to τ(R). Observe that for each f ∈ a, given
the natural map

R→ F e∗R
·F e
∗ f−−−→ F e∗R,

one has, after taking HomR(−, R),

HomR (F e∗R,R)
HomR(−,·F e

∗ f)−−−−−−−−−−→ HomR (F e∗R,R)
ev−→ HomR(R,R) ∼= R� R�a.

The ideal a is compatible if and only if the above map is the zero map.

Lemma 1.13.133 (Schwede). An ideal a is compatible if and only if

HomR (F e∗R,R)
HomR(−,·F e

∗ f)−−−−−−−−−−→ HomR (F e∗R,R)
ev−→ HomR(R,R) ∼= R� R�a

is zero, and by Matlis duality, a is compatible if and only if

ER�a
→ ER → ER ⊗ F e∗R

HomR(−,·F e
∗ f)∨−−−−−−−−−−−→ ER ⊗ F e∗R

is zero.

Remark 1.13.134. There is also a fact due to Matlis duality: there is a bijective correspondence

{submodules N ⊆ E} ∼= {ideals J ⊆ R}

given by N 7→ AnnN and J 7→ ER�J
.

Theorem 1.13.135. τb(R) ∼= τ(R). Test ideals exist!

Proof. To see τb(R) is compatible, it’s enough to check that

ER�τb(R)
→ ER → ER ⊗R F e∗R→ ER ⊗R F e∗R

is zero. Notice that

0∗E
∼= ER�Ann 0∗E

= ER�̃τ(R)

∼= ER�τb(R)
.

If a is any compatible ideal, then

ER�a
→ ER → ER ⊗R F e∗R→ ER ⊗R F e∗R

is zero, but ER�a
⊆ 0∗E ; i.e.,

a = AnnER�a
⊇ Ann 0∗E = τ̃(R) ∼= τb(R),

as we needed to show.
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1.13.2 Frobenius Closure

Remark 1.13.136. We can characterize (weakly) F -regular rings in terms of a closure; R is
weakly F -regular if and only if a = a∗ for all ideals a ⊆ R. We would like to characterize other
singularities in terms of closures.

Definition 1.13.137 (Frobenius closure). For an ideal a ⊆ R, the Frobenius closure of a is

aF =
{
z ∈ R | zq ∈ a[q] for all q � 0

}
.

Remark 1.13.138. It’s obvious that a ⊆ aF ⊆ a∗. Hence, in a (weakly) F -regular ring, a = aF

for all a ⊆ R.

Example 1.13.139. There are ideals for which a 6= aF . Let R = k[u, v, y, z]�(uv, uz, z(v − y2)).

One can check that y3z4 6∈ (y2(u2 − z4)), but (y3z4)p ∈ (y2(u2 − z4))[p]. Thus (y2(u2 − z4)) is not
Frobenius closed. Remark also that R is not F -split.

Lemma 1.13.140. The operation a 7→ aF is a closure.

Proof. We only show that if a ⊆ R is an ideal, then aFF = aF . If z ∈ aFF , then zp
e ∈ (aF )[pe].

Write aF = (x1, ..., xn); thus

zp
e

=
∑

aixi
pe .

Each xi is in aF , so xi
pe ∈ a[pe]. Pick e′ such that xi

pe
′

∈ a[pe
′
] for all i. Thus,

zp
e+e′

=
∑

ai
pe
′

xi
pe+e′

∈ a[pe+e′ ],

and so z ∈ aF .

Remark 1.13.141. Our goal is to show that R is F -split if and only if a = aF for all a ⊆ R. We
do so in the following steps.

Lemma 1.13.142. If R is F -split, then a = aF for all a.

Proof. If R → F e∗R
ϕ−→ R is a splitting and z ∈ aF for some a ⊆ R, then zp

e ∈ a[pe], so we have
F e∗ z

pe ∈ F e∗ a[pe]. Therefore

z = ϕ
(
F e∗ z

pe
)
∈ ϕ

(
F e∗ a

[pe]
)

= ϕ (aF e∗R) = aϕ (F e∗R) = a.

Remark 1.13.143. Notice that if we set S = F e∗R and view R ↪→ S as a module finite (since
rings are F -finite) extension, then for e� 0, we have

aS ∩R = aF e∗R ∩R = F e∗ a
[pe] ∩R =

{
z ∈ R | F e∗ zp

e

∈ F e∗ a[pe]
}

=
{
z ∈ R | zp

e

∈ a[pe]
}

= aF .

We can ask if the property a = aS ∩ R is equivalent to R ↪→ S being split. (One can easily show
that R ↪→ S split implies a = aS ∩R by repeating the above proof.)

Theorem 1.13.144 (Hochster). For a module finite inclusion R ↪→ S of excellent local rings,
aS ∩R = a for all a ⊆ R implies R ↪→ S splits.

Corollary 1.13.145. A reduced excellent local ring is F -split if and only if a = aF for all a ⊆ R.
As a ⊆ aF ⊆ a∗, it’s also clear that F -regular implies F -split via the characterizations in terms of
closure discussed.
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Remark 1.13.146. Recall Theorem 1.7.18 [Singh]; if R = k[A,B,C,D, T ]�I where I is the
2× 2 minors of [

A2 + Tm B D
C A2 Bn −D

]
.

We saw that if p > 2, R is not F -regular for m − m
n > 2 and not F -split for gcd(m, p) = 1. To

verify these claims, one checks explicitly that BnTm−1 6∈ (A,D), but BnTm−1 ∈ (A,D)∗. The
trick is to set q = pe = 2m` + δ for `, δ ∈ Z with `(m − m

n − 2) ≥ 1 and −m + 2 ≤ δ ≤ 1. Thus,
q +m− 1 ≥ 2m`+ 1 and q ≤ 2m`+ 1. One can then check carefully that(

BnTm−1
)2m`+1 ∈

(
A2m`+1, D2m`+1

)
.

Remark 1.13.147. We can also interpret F -rational, F -injective, and F -nilpotent singularities in
terms of tight/Frobenius closure of local cohomology. Let (R,m) be a Cohen-Macaulay local ring
of dimension d. We know via Corollary 1.8.11 that R is F -rational if and only if 0∗Hd

m(R) = 0

(and note that Hd
m(R) 6= 0).

Definition 1.13.148 (Frobenius closure of a module). In a similar way to tight closure (Definition
1.13.120 [tight closure of a module]), we can extend Frobenius closure to modules, defining

0FHd
m(R) =

{
z ∈ Hd

m(R) | zq = 0 for q � 0
}
.

Remark 1.13.149. Notice that 0FHd
m(R) ⊆ 0∗Hd

m(R). Also, recall that for a non-Cohen-Macaulay

local ring (R,m), R is F -nilpotent if the Frobenius action on Hi
m(R) is nilpotent for all i < d

and the Frobenius action on 0∗Hd
m(R) is nilpotent. Immediately, we may recharacterize the second

condition as 0FHd
m(R) = 0∗Hd

m(R). It is therefore clear from this approach that Theorem 1.8.15

[Srinivas-Takagi] holds; F -nilpotent and F -injective implies F -rational.

Remark 1.13.150. Computing aF can be hard, but when a is finitely generated, there exists
e� 0 such that a[pe] = (aF )[pe].

Definition 1.13.151 (Frobenius test exponent). Call fte(a) the Frobenius test exponent. It
is the number such that

a[pfte(a)] =
(
aF
)[pfte(a)]

.

Remark 1.13.152. Recall that in Hd
m(R),

· · · ⊆ kerF e ⊆ kerF e+1 ⊆ · · ·

stabilizes (which is surprising, since Hd
m(R) is artinian, not noetherian). The number e′ for which

kerF e
′

= kerF e
′+k for all k is HSL(Hd

m(R)) (recall Remark 1.8.47).

Theorem 1.13.153 (Katzman-Sharp). Let (R,m) be a Cohen-Macaulay ring. If q ⊆ R is an ideal
generated by part of a system of parameters for R, then fte(q) ≤ HSL(Hd

m(R)).

Remark 1.13.154. By Theorem 1.8.48 [Hartshorne-Speiser-Lyubeznik], since Hd
m(R) is

artinian, HSL(Hd
m(R)) <∞, and so in the context above, fte(q) <∞. Let

fte(R) = sup
q generated by parts

of systems of parameters

fte(q).

It is an open question if fte(R) <∞.

Example 1.13.155. Recall Definition 1.2.6 [system of parameters]; given a local ring (R,m)
of dimension d, a sequence x1, ...xd ∈ R is a system of parameters if

√
(x1, ..., xd) = m. For instance,

if R = kJx, y, u, vK�(xu− yv), then x, v, y − u is a system of parameters.
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Theorem 1.13.156 (Colon Capturing). Let (R,m) be a domain. If x1, ..., xd is a system of
parameters, then

((x1, ..., xi) : xi+1) ⊆ (x1, ..., xi)
∗

for all i ∈ {1, ..., d− 1}.

Corollary 1.13.157. Let (R,m) be a domain. If R has a system of parameters x1, ..., xd for which
(x1, ..., xd)

∗ = (x1, ..., xd), then R is Cohen-Macaulay.

Proof. Recall that R is Cohen-Macaulay if and only if x1, ..., xd is a regular sequence (Definition
1.5.31 [Cohen-Macaulay 2]). Furthermore, x1, ..., xd is a regular sequence if and only if

((x1, ..., xi−1) : xi) ⊆ (x1, ..., xi) .

By hypothesis, (x1, ..., xi) = (x1, ..., xi)
∗, and the result follows by applying Theorem 1.13.156

[Colon Capturing].

Definition 1.13.158 (parameter ideal). We say that an ideal q ⊆ R is a parameter ideal if
q = (x1, ..., xd) for some system of parameters x1, ..., xd ∈ R.

Remark 1.13.159. One can quickly guess that a ring R is F -rational if and only if all parameter
ideals q are tightly closed. Indeed, this is the case. Recall that a local ring (R,m) is F -rational if
and only if R is Cohen-Macaulay and 0∗Hd

m(R) = 0, by Theorem 1.8.10 [Smith]. Let’s prove that

theorem, using tools developed since mentioning it.

Proof of Theorem 1.8.10 [Smith]. We must show that 0∗Hd
m(R) is the largest proper F -stable

submodule of Hd
m(R). It’s clear that F (0∗Hd

m(R)) ⊆ 0∗Hd
m(R), since if z ∈ 0∗Hd

m(R), then czp
e

= 0, so

cp(zp)p
e

= 0, so zp = F (z) ∈ 0∗Hd
m(R).

If N is proper and stable, then Matlis dualize to see the map

HomR

(
Hd

m(R)�N,E
)
→ HomR

(
Hd

m(R), E
) ∼= ωR.

As ωR has rank 1, we can find c 6= 0 such that

cωR ⊆ HomR

(
Hd

m(R)�N,E
)
⊆ ωR.

Matlis dualize again to find that

Hd
m(R) Hd

m(R)�N cHd
m(R)

·c

Thus, cN = 0. Now, if z ∈ N , then cF e(z) ∈ cF e(N) ⊆ cN , as N is F -stable, so cF e(z) = 0. Thus
z ∈ 0∗Hd

m(R), and therefore N ⊆ 0∗Hd
m(R).

Remark 1.13.160. Recall from Remark 1.5.5 that

Hd
m(R) ∼= lim−→

t

Extd
(
R�mt, R

)
∼= lim−→

t

R�(x1
t, ..., xd

t)

for any system of parameters x1, ..., xd. A class η ∈ Hd
m(R) can be represented under this isomor-

phism as η = [z + (x1, ..., xd)], so F e(η) = [zp
e

+ (x1
pe , ..., xd

pe)].
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Lemma 1.13.161 (Smith). Let (R,m) be a Cohen-Macaulay local domain. Let x1, ..., xd be a
system of parameters for R. An element z is in (x1, ..., xd)

∗ if and only if η = [z + (x1, ..., xd)] is
in 0∗Hd

m(R).

Proof. If z ∈ (x1, ..., xd)
∗, then czp

e ∈ (x1
pe , ..., xd

pe), and therefore cF e(η) = 0.

On the other hand, if cF e(η) = 0, then [czp
e

+ (x1
pe , ..., xd

pe)] = 0. As R is Cohen-Macaulay,
czp

e ∈ (x1
pe , ..., xd

pe), and therefore z ∈ (x1, ..., xd)
∗.

Theorem 1.13.162 (Smith). A local domain (R,m) is F -rational if and only if q = q∗ for all
parameter ideals q ⊆ R.

Proof. Let x1, ..., xd be a system of parameters, and let q = (x1, ..., xd) be a parameter ideal. If
(R,m) is F -rational, then for any z ∈ q∗, we have η = [z + q] ∈ 0∗Hd

m(R) = 0, so z ∈ q.

Conversely, if q = q∗, then R is Cohen-Macaulay. For any system of parameters x1, ..., xd, an
element η = [z + (x1, ..., xd)] ∈ 0∗Hd

m(R) must satisfy cF e(η) = 0, since q = q∗. If cF e(η) = 0, then

η = 0, and therefore 0∗Hd
m(R) = 0, as desired.

Remark 1.13.163. First, note that it immediately follows from Theorem 1.13.162 [Smith]
another way to see that F -regular rings are F -rational.

Note second that the characterization of F -rational rings as those for which q = q∗ for all q ⊆ R a
parameter ideal is historically the original characterization. Theorem 1.13.162 [Smith] showed
the equivalence of this original definition and the definition that we presented in Definition 1.8.1
[F -rational].

Third, one might then hope that one can characterize F -injective rings as those for which q = qF

for all parameter ideals q. Unfortunately, this is not the case.

Theorem 1.13.164 (Quy-Shimomoto). If q = qF for all parameter ideals q ⊆ R, then R is
F -injective. The converse fails, however.

Example 1.13.165. To see that the converse fails, let R = kJu, v, y, z, tK�(t) ∩ (uv, uz, z(v − y2)).

R is of dimension 4 and F -injective, but R is not F -split, since

y3z4t ∈
(
y2
(
u2 − z4

))F \ (y2
(
u2 − z4

))
.

The converse does hold if the length of Hi
m(R) is finite for i < dimR.

Theorem 1.13.166 (Polstra-Quy). An equidimensional ring (R,m) is F -nilpotent if and only if
qF = q∗ for all parameter ideals q ⊆ R.

Remark 1.13.167. Finally, let’s return to the ongoing diagram one last time (last seen in Remark
1.10.58). We have:

a = a∗ q=q∗

for all parameter ideals

F -regular F -rational

a = aF F -split F -injective

anti-nilpotent

q=qF

for all parameter ideals

Definition 1.13.104
[weakly F -regular]

Theorem 1.13.162
[Smith]Theorem 1.9.6

Remark 1.9.7

Theorem 1.8.4

+Gorenstein, Theorem 1.10.57

Corollary
1.13.145

Lemma 1.7.1

Proof of Theorem 1.6.3 [Ma]

+F -nilpotent,
Theorem 1.8.15 [Srinivas-Takagi]

⇐⇒
qF =q∗ for all parameter ideals,

Theorem 1.13.166 [Polstra-Quy]

+quasi-Gorenstein, Lemma 1.10.54

Theorem 1.13.164 [Quy-Shimomoto]
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